### Air Force Institute of Technology

### **AFIT Scholar**

Theses and Dissertations

Student Graduate Works

3-2-2004

## A Statistically-Based Method for Predicting Fog and Stratus Dissipation

Louis L. Lussier III

Follow this and additional works at: https://scholar.afit.edu/etd



Part of the Meteorology Commons

### **Recommended Citation**

Lussier, Louis L. III, "A Statistically-Based Method for Predicting Fog and Stratus Dissipation" (2004). Theses and Dissertations. 4110.

https://scholar.afit.edu/etd/4110

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.





## A STATISTICALLY-BASED METHOD FOR PREDICTING FOG AND STRATUS DISSIPATION

### **THESIS**

Louis L. Lussier III, Captain, USAF

AFIT/GM/ENP/04-09

# DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

## AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government.



# A STATISTICALLY-BASED METHOD FOR PREDICTING FOG AND STRATUS DISSIPATION

### **THESIS**

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Meteorology

Louis L. Lussier III, BS

Captain, USAF

March 2004

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



### A STATISTICALLY-BASED METHOD FOR PREDICTING FOG AND STRATUS DISSIPATION

Louis L. Lussier III, BS Captain, USAF

Approved:

Steven T. Fiorino (Chairman)

1 MAR 04

Michael K. Walters (Member)

Daniel E. Reynolds (Member)

### Abstract

A statistically-based forecasting tool is developed for Dover AFB, McGuire AFB, and Andrews AFB for dissipation times of fog and low stratus. Probability forecasts are produced at hourly increments from 0-6 hours for the most extreme reductions in visibility (less than 0.5 mi) and ceilings (below 200 ft). Forecasts are based on surface observations, upper air observations, and climatological parameters.

Ceiling forecasts at Dover AFB and McGuire AFB show improvements over conditional climatology ranging from 1-51% with an average improvement of 19.2% when verified against an independent data set. McGuire AFB visibility forecasts show an average improvement over conditional climatology of 3%. These findings are of particular importance to the Air Force in general and specifically to the 15<sup>th</sup> Operational Weather Squadron (15 OWS) who produces forecasts for these airfields. Implementing a method superior to conditional climatology is expected to provide improved forecasts and flight operations for these sites.

The two forecasts for Andrews AFB show relatively low mean square errors, but are unable to consistently improve on conditional climatology, demonstrating an average decrease in forecasting skill of 42%. Small samples of data could be the reason for the decrease in skill. The Dover visibility forecast also shows negative forecast skill, with an average decrease of 39%.

The method is a success in producing forecasts for ceiling and visibility criteria that had never previously been examined. Further research on the technique could produce a powerful tool consistently able to defeat conditional climatology. It is suggested that the 15 OWS incorporate this methodology into their operational forecasting routine.



### Acknowledgements

I would like to thank my advisor, Major Steven T. Fiorino for his expertise and continued positive attitude throughout this process ("You're doing fine Lou"). Next I'd like to thank the other two members of my committee Mr. Daniel E. Reynolds who enthusiastically blew my mind with statistical insight over the last few weeks of this process (whether I wanted it or not) and Lt Col Michael K. Walters who experienced first-hand the daily pain and anguish of me sitting at my computer.

Next I'd like to thank the Met 11: "Moon Pie" Miller for his company on Saturdays and Sundays. Danielle for helping me with my page numbering. Kevin for convincing me that Maj. Fiorino really was a good guy for an advisor. Steve for pointing out that a column in one of my tables was misaligned. Brian for convincing me to use Fortran (thanks a lot). Jonathan for having the remarkable ability to sit right next to me on some of those rough days. Greg for his grandfatherly wisdom. Robin for the idea of what to get my wife for Christmas. Jeff for not gloating too much during a couple of rough weeks in October and for lending me a toy ball of the world. Finally, I'd like to thank myself, and why not?

On a serious note, I'd like to thank my wonderful wife who continually put up with me even when I practically ignored her for two months to look at millions of surface weather observations.

Louis L. Lussier III



### **Table of Contents**

|                                            | Page |
|--------------------------------------------|------|
| Abstract                                   | iv   |
| Acknowledgements                           | V    |
| List of Figures                            | viii |
| List of Tables                             | ix   |
| I. Introduction                            | 1    |
| 1.1 Statement of the Problem.              | 2    |
| 1.2 Research Objectives                    | 4    |
| II. Literature Review                      | 6    |
| 2.1 Numerical Models                       | 6    |
| 2.2 Conditional Climatology                | 7    |
| 2.3 Observations-Based Statistical Methods |      |
| 2.4 Satellite Imagery                      |      |
| 2.5 Multi-Source Methods                   | 13   |
| III. Methodology                           | 15   |
| 3.1 Overview                               | 15   |
| 3.2 Data                                   | 16   |
| 3.2.1 Surface and Upper Air Data           | 16   |
| 3.2.2 Missing Surface Data                 | 17   |
| 3.2.3 Missing Upper Air Data               | 19   |
| 3.2.4 Data Assimilation and Manipulation   |      |
| 3.3 Statistical Approach                   |      |
| 3.3.1 Predictands                          |      |
| 3.3.2 Predictors                           |      |
| 3.3.3 Equation Development                 | 25   |
| IV. Analysis and Results                   | 36   |
| 4.1 Overview                               | 36   |
| 4.2 Dover AFB                              |      |
| 4.2.1 Ceiling Less than 200 ft             | 36   |
| 4.2.2 Visibility Less than 0.5 mi          | 41   |
| 4.3 McGuire AFB                            | 45   |



| 4.3.1 Ceiling Less than 200 ft                    | 45 |
|---------------------------------------------------|----|
| 4.3.2 Visibility Less than 0.5 mi                 | 48 |
| 4.4 Andrews AFB                                   | 53 |
| 4.4.1 Ceiling Less than 200 ft                    | 53 |
| 4.4.2 Visibility Less than 0.5 mi                 |    |
| 4.5 Underlying Model Problems                     |    |
| 4.6 Applications of the Observations-Based Method | 62 |
| V. Conclusions and Recommendations                | 66 |
| 5.1 Conclusions                                   | 66 |
| 5.2 Recommendations for the 15 OWS                |    |
| 5.3 Recommendations for Future Research           | 69 |
| Appendix. Surface Observing Networks              | 72 |
| Bibliography                                      | 76 |



### **List of Figures**

| Figure                                                       | Page |
|--------------------------------------------------------------|------|
| Location and ICAOs of the 15 OWS Airfields                   | 3    |
| 2. Flowchart for Data Manipulation                           | 21   |
| 3. Residual Plots from Data Sets.                            | 27   |
| 4. Normal Probability Plots                                  | 28   |
| 5. Linear Regression Flowchart                               | 32   |
| 6. Verification Flowchart                                    | 33   |
| 7. Forecast Statistics for KDOV Ceiling Less than 200 ft     | 38   |
| 8. Forecast Statistics for KDOV Visibility Less than 0.5 mi  | 42   |
| 9. Forecast Statistics for KWRI Ceiling Less than 200 ft     | 46   |
| 10. Forecast Statistics for KWRI Visibility Less than 0.5 mi | 49   |
| 11. Forecast Statistics for KADW Ceiling Less than 200 ft    | 54   |
| 12. Forecast Statistics for KADW Visibility Less than 0.5 mi | 58   |
| 13. Forecast Comparison for Dover AFB                        | 64   |
| 14. Forecast Comparison for McGuire AFB                      | 65   |



### **List of Tables**

| Table                                                        | Page  |
|--------------------------------------------------------------|-------|
| 1. Annual Number of Days with Reduced Ceiling and Visibility | 4     |
| 2. List of Predictands                                       | 9     |
| 3. Surface Meteorological Parameters Used as Predictors      | 9     |
| 4. Upper Air Meteorological Parameters Used as Predictors    | 12    |
| 5. Binary Ceiling Replacement Values                         | 18    |
| 6. Surface Predictors for the 15 OWS AOR                     | 23    |
| 7. Upper Air Predictors for the 15 OWS AOR                   | 24    |
| 8. Upper Air Stations in the 15 OWS AOR                      | 25    |
| 9. Climatological Predictors for the 15 OWS AOR              | 26    |
| 10. Statistical Tests                                        | 29    |
| 11. Forecast Equations for KDOV Ceiling Less than 200 ft     | 39    |
| 12. Forecast Equations for KDOV Visibility Less than 0.5 mi  | 44    |
| 13. Forecast Equations for KWRI Ceiling Less than 200 ft     | 47    |
| 14. Forecast Equations for KWRI Visibility Less than 0.5 mi  | 51-52 |
| 15. Forecast Equations for KADW Ceiling Less than 200 ft     | 56    |
| 16. Forecast Equations for KADW Visibility Less than 0.5 mi  | 59    |
| 17. Example Predictive Equation                              | 63    |
| A1. Surface Network Observing Stations for Dover AFB.        | 73    |
| A2. Surface Network Observing Stations for McGuire AFB.      | 74    |



| A3. Surface Network Observ | ing Stations for Andrews AFB | 75 |
|----------------------------|------------------------------|----|
|----------------------------|------------------------------|----|



# A STATISTICALLY BASED METHOD FOR PREDICTING FOG AND STRATUS DISSIPATION

### I. Introduction

Weather forecasters in general are unable to consistently beat persistence in short-term (0-6 hour) forecasts of ceiling and visibility. Dagostraro et al. (1995) and Dallavalle and Dagostraro (1995), showed that not only is persistence competitive with National Weather Service (NWS) forecasts, but that NWS forecasts have not improved in the period from 1985-1995. The same inadequacies found in the NWS are experienced throughout Air Force (AF) weather. The standard to beat in the AF is conditional climatology, because it enables forecasters to incorporate knowledge of what has happened in similar situations in the past, thus it is considered a better predictor of future weather than persistence (Hilliker and Fritsch 1999).

A statistical technique based on Vislocky and Fritsch (1997) and Hilliker and Fritsch's (1999) work could provide a tool for the 15<sup>th</sup> Operational Weather Squadron (15 OWS) to improve forecasts from conditional climatology tables. This research develops an automated statistical data system using an observations-based network for operational implementation.

Conditional climatology combines persistence and climatology by incorporating knowledge of outcomes of similar weather situations in the past in order to provide short-



term forecasts of current weather parameters. Because it represents averaged conditions over a long period of time, it is a more difficult tool to beat than persistence (Vislocky and Fritsch 1997). However, conditional climatology tables do exhibit some problems. Murphy and Katz (1995) illustrate that small sample sets in certain cells can lead to unstable probabilities, as would be especially true for the extreme cases examined in this research. It is therefore imperative that the AF develops a more skilled forecasting method for fog and stratus dissipation.

### 1.1 Statement of the Problem

Accurate predictions of fog and low stratus dissipation (for the purpose of this paper low stratus is defined as clouds at or below 200 ft AGL and the term fog refers to fog and/or low stratus) are essential to all aircraft operations. The 15 OWS is responsible for producing forecasts for 11 airfields throughout the northeastern quadrant of the United States, stretching from North Dakota to Washington DC (Fig. 1). Aircraft supported by the 15 OWS range from large fixed wing aircraft to rotary wing. Among these are transport aircraft, which have critical thresholds for flight cancellations of 200 ft ceilings and 0.5 mile visibility. Accurate ceiling and visibility forecasts are critical to ensure personnel and essential cargo is transferred in a timely manner. Every hour of inaccuracy costs the United States government thousands of dollars and possibly lives (FAS 2003).

There are numerous reasons for the lack of skill in predicting fog dissipation. Fog dissipation is highly variable situation and based on small changes in a variety of



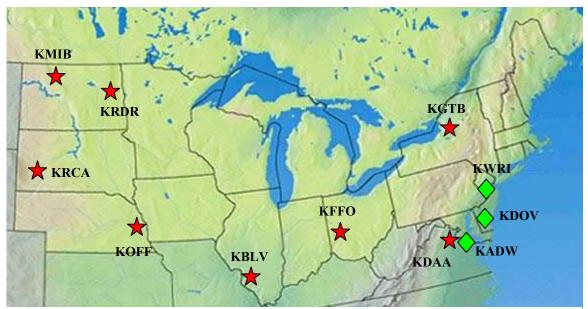


FIG. 1. Location and ICAOs of the 15 OWS Airfields. Airfields with the (♦) symbol are the critical bases, home to aircraft with minimums of 200ft/0.5 mi. Adapted from the 15 OWS homepage (15 OWS 2003).

meteorological parameters (Anthis & Cracknell 1998). Furthermore, the physical environment presents large, localized influences such as snow cover (Johnson 1978), variable terrain and bodies of water that contribute to variability in dissipation rates (Weiss and Gurka 1975). Other important factors that would aid in prediction, such as depth of the fog and height of the inversion layer are not routinely measured nor easily obtained. Vislocky and Fritsch (1997) noted that the single most important factor in short-term forecasting is the latest surface observation. For this reason alone, numerical models are at a disadvantage when it comes to predicting dissipation.

Of these forecast difficulties, the vast differences in terrain, climatology, and relationship to bodies of water among the airfields in the 15 OWS Area of Responsibility (AOR) represent a significant challenges. These variations present forecasters with a



TABLE 1. Annual Number of Days with Reduced Ceiling and Visibility. The three highlighted bases are home to transport aircraft with flight minimums of 200 ft/0.5 mi. (15 OWS 2003).

|                           |      |         | Ceiling/Visibility Threshold Criteria (ft/mi) |         |           |           | ft/mi)  |
|---------------------------|------|---------|-----------------------------------------------|---------|-----------|-----------|---------|
| Airfield                  | ICAO | vis < 7 | <3000/3                                       | <1500/3 | <1000/2   | <500/1.5  | <200/.5 |
|                           |      |         |                                               |         |           |           |         |
| Minot AFB (ND)            | KMIB | 71      | 62                                            | 40      | 26        | 15        | 4       |
| Grand Forks AFB (ND)      | KRDR | 72      | 66                                            | 40      | 26        | 15        | 4       |
| Ellsworth AFB (SD)        | KRCA | 47      | 47                                            | 33      | 29        | 18        | 7       |
| Offutt AFB (NE)           | KOFF | 109     | 73                                            | 47      | 33        | 15        | 4       |
| Scott AFB (IL)            | KDLV | 197     | 69                                            | 40      | 26        | 11        | 4       |
| Wright-Patterson AFB (OH) | KFFO | 193     | 84                                            | 47      | 29        | 11        | 1       |
| Fort Drum (NY)            | KGTB | 117     | 88                                            | 47      | 33        | 18        | 4       |
| McGuire AFB (NJ)          | KWRI | 192     | 77                                            | 58      | 44        | <b>26</b> | 8       |
| Fort Belvoir (VA)         | KDAA | 170     | 69                                            | 55      | 37        | 22        | 7       |
| Andrews AFB (VA)          | KADW | 170     | 69                                            | 55      | <b>37</b> | 22        | 7       |
| Dover AFB (DE)            | KDOV | 187     | 58                                            | 44      | <b>29</b> | 15        | 4       |

variety of challenges from different types of fog and/or physical mechanisms contributing to formation and dissipation. Table 1 quantifies some of these difficulties by summarizing the number of days in which fog impacts operations. The data illustrate that low ceilings and visibility are common occurrences throughout the AOR. The eastern seaboard, home of a majority of the cargo aircraft in the AF inventory, experiences reduced ceilings and visibility on average half of the days of the year, significantly impacting military operations.

### 1.2 Research Objectives

The overall objective of this research is to produce an automated ceiling and visibility forecasting tool for the 15 OWS that will improve on all currently employed methods.



The specific research goals are as follows:

- 1. Develop a statistically-based system using surface and upper air observations as well as climatological predictors to accurately forecast fog dissipation.
- 2. Completely automate system to ensure ease of use.
- 3. Present a viable forecasting tool for the 15<sup>th</sup> OWS.

The next topic addressed is a summary of past research on successful prediction methods of fog dissipation. Various techniques are examined including numerical weather prediction, conditional climatology, observations-based methods, satellite imagery, and multi-source methods, which combine two or more of the above to produce a dissipation forecast. The third chapter focuses on the methods employed in this research to develop the forecasting tool for the 15 OWS. The fourth chapter provides detailed results of the research, and comparisons to conditional climatology are examined. Finally, conclusions are made which demonstrate the effectiveness of the newly developed method, and suggestions are offered for possible improvements in the future.

Using statistical techniques for forecasting weather is not a new concept, however, with the development of physically-based numerical models, statistical techniques have become less prevalent in short-term forecasting. Chapter two examines the success rate that statistically-based forecasting has produced in the past for short-term prediction of fog dissipation.



### **II. Literature Review**

This research is focused on the dissipation of fog and does not address fog formation or prediction. This section focuses on several different methods to produce fog dissipation. While it focuses mainly on statistically-based methods to predict dissipation, other techniques, such as numerical models, conditional climatology, satellite imagery, and multi-source methods are examined. Advantages and disadvantages are examined, as well as areas where these techniques can be improved.

### 2.1 Numerical Models

Numerical models are favored by forecasters due to their ease of use, but are often not the best available asset for short-range forecasts. Statistically-based products derived from high-resolution mesoscale models can predict fog dissipation times, but have not proven reliable. Porter (1995) illustrated the fact that persistence is superior to mesoscale numerical model predictions in the short-term. Furthermore, Vislocky and Fritsch (1997) showed that while Model Output Statistics (MOS) can consistently beat persistence and conditional climatology, there are still better methods. The NWS (1981, 1995) concluded that observations are the most important ingredient in producing short-range forecasts, leading Vislocky and Fritsch (1997) to suggest that a surface-based observing network would be more effective than MOS guidance.



### 2.2 Conditional Climatology

As mentioned earlier, conditional climatology offers an advantage over persistence in that it incorporates knowledge of what has happened in past situations to produce an accurate probability forecast. Data are interpreted from tables which are stratified by station, month, time of day, and wind direction and offer probabilities out to 48 hours on the occurrence of select ceiling and visibility criteria. Tables are applied based on the current ceiling criteria already being met. As mentioned, these tables are stratified by time of day and wind direction, therefore, the only required meteorological parameter needed to produce a forecast is the current surface direction at the station.

This methodology is favored by the Air Force for its simplicity and its consistent ability to produce fairly accurate forecasts. The general problem with any climatological model is that it does not take into account the current meteorological event occurring at and around the station. Observations-based networks include this data in statistical methodology to improve on conditional climatology.

### 2.3 Observations-Based Statistical Methods

Enger et al. (1964) introduced the concept of statistical techniques for 2-7 hr prediction of ceiling and visibility in the 1960's. Experiments in Chicago and major cities on the west coast of the US compared objective forecasts to conditional climatology and subjective forecasts. Enger et al. (1964) used 450 binary predictors to forecast future values of 36 ceiling and visibility predictands. The results showed that



statistical techniques were superior to conditional climatology, persistence, and subjective forecasts. Improvement ranged from –0.4% to 33.0% with average improvement of 19.2% for ceiling forecasts and 12.8% for visibility forecasts (Enger et al. 1964).

Vislocky and Fritsch (1997) showed more recently that observations-based statistical systems are more effective than MOS and conditional climatology for short-term ceiling and visibility forecasts. Their research focused on 25 major cities along the eastern corridor of the US and used surface observations from a predetermined area around each airfield to forecast future conditions of ceiling and visibility (Vislocky and Fritsch 1997). Hilliker and Fritsch (1999) proved that a similar method could be used to predict fog dissipation at the San Francisco airport.

Vislocky and Fritsch (1997) used a number of predictands (Table 2) based on significant airfield flight restrictions. They embarked on a pilot study to determine the optimal number of surrounding stations and predictors to use in order to eliminate data saturation. The results produced five significant findings:

- The optimal number of stations to consider increases with desired lead-time and is not constant. Variations exist with season, latitude-longitude, and weather among other factors.
- 2. The ceiling and visibility predictors were the most important.
- Non-predictand observations outside the optimal number of stations had very little impact on the forecast.
- 4. Multiplying, adding, or determining trends among predictors added minimal accuracy.



TABLE 2. List of Predictands. Vislocky and Fritsch (1997) produced forecasts using the surface observational based system for these significant aviation operational thresholds. Adapted from Vislocky and Fritsch (1997).

| Variable       | Binary Thresholds |           |               |               |  |
|----------------|-------------------|-----------|---------------|---------------|--|
| Ceiling Height | < 500 ft          | < 1000 ft | ≤ 3000 ft     | ≤ 6500 ft     |  |
| Visibility     | < 1 mi            | < 3 mi    | <u>≤</u> 5 mi | <u>≤</u> 7 mi |  |

5. The optimal number of stations to use for 1, 3, and 6-hr forecasts are 10, 25, and 40 respectively.

Vislocky and Fritsch (1997) determined that 33 surface parameters were operationally significant in forecasting fog dissipation (Table 3). They also concluded that the addition of climatological factors relating to incoming solar radiation produced a more accurate forecast.

TABLE 3. Surface Meteorological Parameters Used as Predictors. These 33 conditions were determined to be the most significant predictors of fog dissipation. Adapted from Vislocky and Fritsch (1997).

| Variable                              |                 |                     | Binary          | Threshold      |                |                |
|---------------------------------------|-----------------|---------------------|-----------------|----------------|----------------|----------------|
| Opaque Cloud Amount Total Cloud Cover | > 1/10<br>Clear | > 5/10<br>Scattered | >9/10<br>Broken | Overcast       | Obscured       |                |
| Precipitation Occurrence              | Yes             | Scatterea           | Broken          | o vereust      | ooscarca       |                |
| Ceiling Height                        | < 200 ft        | < 500 ft            | < 1000 ft       | $\leq$ 3000 ft | $\leq$ 6500 ft | ≤ 12000 ft     |
| Visibility                            | < 0.5 mi        | < 1.0 mi            | < 3.0 mi        | ≤ 5.0 mi       | ≤ 7.0 mi       | <u>≤</u> 10 mi |
| Wind Direction                        | $0^{\circ}$     | < 45°               | < 90°           | < 135°         | < 180°         | < 235°         |
| Wind Direction (cont.)                | < 270°          | < 315°              |                 |                |                |                |
| Dew Point                             |                 |                     |                 |                |                |                |
| Dewpoint Depression                   |                 |                     |                 |                |                |                |
| Sea Level Pressure                    |                 |                     |                 |                |                |                |



Vislocky and Fritsch (1997) used a least squares linear regression model to develop their predictive equations. In this method, each predictand is the result of a combination of predictors. A forward stepwise screening algorithm was used to select the best available predictors (Vislocky and Fritsch 1997). One predictor is added at a time in order to gauge the effect each has on the predictand. This method allows useless or redundant predictors to be discarded (Vislocky and Fritsch 1997).

The results of Vislocky and Fritsch's (1997) findings can be summarized:

- 1. Observations-based methods on average produced 12% (with a 5-20% range) better results than conditional climatology and 4% better than MOS.
- 2. Any short-range forecast should rely more heavily on observations than numerical models.
- 3. At the 6-hour point, the observations and MOS predictands were similar, which verified that the 6-hr point is the time for numerical models to take over.

Two major advantages of an observations-based system are that it is not tied to any numerical model and it can be run in a matter of seconds on any computer as soon as new data becomes available (Vislocky and Fritsch 1997).

Suggested improvements to the observations-based statistical method include incorporation of radar data, satellite imagery, and upper air observations into the equations (Vislocky and Fritsch 1997). Hilliker and Fritsch (1999) added upper air observations to the surface-based observations system in a study at the San Francisco International Airport. They used upper air data from Oakland since it is within the area



of interest and developed additional upper air predictors (Table 4). Static stability was added as a predictor in addition to basic upper air parameters.

Hilliker and Fritsch (1999) used a predictand of 3000 ft ceiling height and surface predictors similar to Vislocky and Fritsch (1997) with modifications for local effects.

Hilliker and Fritsch (1999) employed a logarithmic regression model with the addition of upper air parameters. Hilliker and Fritsch's (1999) research showed that:

- 1. Including upper air predictors produced 0-3% improvements over the strictly surface based systems for 0-3 hr forecasts.
- 2. The longer the forecast time, the less impact the upper air observations had on the forecast
- 3. Improvements of up to 32% were shown over MOS forecasts.

Hilliker and Fritsch (1999) proved that even in a region with limited observations, observations-based systems are superior to conditional climatology, persistence, and MOS forecasts for short-term forecasts. Furthermore, including upper air parameters, such as static stability, increased the accuracy of the forecasts. Two additional parameters that could improve the forecast are the inversion height and the thickness of the cloud layer (Hilliker and Fritsch 1999).

Vislocky and Fritsch (1997) and Hilliker and Fritsch (1999) showed success in producing dissipation forecasts using observations-based networks. The next section examines the effectiveness of evaluating satellite imagery to forecast dissipation.



TABLE 4. Upper Air Meteorological Parameters Used as Predictors. Parameters were considered for 8 pressure levels between 1000 mb and 500 mb, with the exception of static stability, which was evaluated in three layers between 1000 mb-850 mb. Adapted from Hilliker and Fritsch (1999).

| Parameter                | Binary Threshold                 |                                  |                |                                  |  |  |
|--------------------------|----------------------------------|----------------------------------|----------------|----------------------------------|--|--|
| Height<br>Temperature    |                                  |                                  |                |                                  |  |  |
| Relative Humidity        | ≥ 30%                            | ≥ 50%                            | ≥ 70%          | ≥ 90%                            |  |  |
| Wind Direction           | $23^{\circ}$ to $< 68^{\circ}$   | 68° to < 113°                    | 113° to < 158° | $158^{\circ}$ to $< 203^{\circ}$ |  |  |
| Wind Direction (cont.)   | $203^{\circ}$ to $< 248^{\circ}$ | $248^{\circ}$ to $< 293^{\circ}$ | 293° to < 338° | $338^{\circ}$ to $< 23^{\circ}$  |  |  |
| Wind Speed               |                                  |                                  |                |                                  |  |  |
| Static Stability (dθ/dz) |                                  |                                  |                |                                  |  |  |

### 2.4 Satellite Imagery

Another method in predicting the dissipation of fog is the use of satellite imagery. Gurka (1974, 1978) showed that high resolution visible imagery can be used to predict fog dissipation because of the strong correlation between fog brightness and duration. Dissipation occurs first on the outer edges of the fog (Gurka 1974), where the ground is heated more intensely along the boundaries than in the interior (Gustafson and Wasserman 1976). Anthis and Cracknell (1999) concluded that the dissipation of fog proceeds inward with time and that it is dissipated according to layer thickness.

Gurka's (1978) work provided significant findings, concluding that enhanced visible satellite imagery could produce effective short-range forecasts of fog dissipation, especially for aviation. Gurka (1978) also realized that computers would be able to ingest and process this data quickly enough to produce real time short-range predictions.



Since all previously mentioned methods had success in predicting dissipation time, the next section examines the possibility of combining parameters into a multi-source method.

### 2.5 Multi-Source Methods

Reudenbach and Bendix (1998) made progress using multi-source data to predict dissipation in Germany. Their work used four separate types of data for model development: thermodynamic equations, NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery, terrain models, and surface and upper air meteorological observations. Reudenbach and Bendix (1998) focused on multi-source data because single source methods are not able to account for all aspects of dissipation. Of note is that although Gurka (1974) presented a method for nowcasting fog clearance, the method was never standardized, nor proven 100% reliable. Reudenbach and Bendix (1998) also noted that numerical models cannot always account for local effects such as dissipation due to advective processes. They successfully developed a straightforward model for forecasting clearance in 1km by 1km areas.

This chapter summarizes multiple methods employed to accurately predict the dissipation of fog. Vislocky and Fritsch (1997) and Hilliker and Fritsch (1999) showed that an observations-based method produces superior forecasts, while standards such as MOS guidance, persistence and conditional climatology are still regularly employed. Gurka (1974, 1978) and Anthis and Cracknell (1998, 1999) demonstrated that visible satellite imagery could be used to predict duration of fog events. Reudenbach and



Bendix (1998) demonstrated the effectiveness of a multi-source data system on the accurate prediction of fog dissipation times

Each method displayed some degree of success in predicting fog dissipation; however this research focuses on adapting a statistically-based method to forecast dissipation. There are several reasons for this. First, as shown by Vislocky and Fritsch (1997) this methodology is superior to model output and conditional climatology. Second, satellite imagery by itself has not proven to be a single effective tool for predicting dissipation. A multi-source method, that includes an observations-based network and satellite imagery, could produce a superior forecast and should be evaluated in the future. The next chapter details the process of developing and implementing the statistically-based system.



### III. Methodology

### 3.1 Overview

The literature review describes several methods for predicting fog dissipation that prove effective in all geographic areas. Vislocky and Fritsch (1997) showed observations-based systems can be successfully employed along the east coast of the US, while Hilliker and Fritsch (1999) showed that the system is effective for the west coast. Since observations-based networks are superior to conditional climatology and model output (Vislocky and Fritsch 1997), this method is applied to the airfields in the 15 OWS to produce a superior fog dissipation forecast tool.

This research follows Vislocky and Fritsch (1997) and Hilliker and Fritsch's (1999) work into the use of a statistically-based observation network to produce accurate short-term dissipation forecasts. Although this method is a proven success along the east coast, changes are made to fit the needs of the AF. Specifically, a different set of predictands is required in order to meet the need of the 15 OWS, as Vislocky and Fritch's (1997) original work failed to address the critical threshold of 200 ft ceilings and 0.5 mi visibility.

The scope of the problem for the entire 15 OWS AOR may seem large, however, it is not insurmountable and is solved piecewise. The most critical problem, 200 ft ceilings and 0.5 mile visibility on the east coast, is addressed in this research. Once the



technique and processes are established, equations tested, and methodology set, other airfields and predictands can be examined in the future.

The remaining portion of this chapter is dedicated to an explanation on the procedures and processes employed to develop the predictive equations. Section 3.2 examines the surface, upper air, and climatological data sets used to develop the equations, while section 3.3 details the statistical approach taken in this research.

### 3.2 Data

3.2.1 Surface and Upper Air Data. This research is based on a five-year data set (1998-2002), consisting of standard surface observations in METAR format and raw upper air data in formatted ASCII text, provided by the Air Force Combat Climatology Center (AFCCC) in Asheville, NC. The surface data consist of both standard hourly and special observations for stations along the east coast of the US. The upper air data consist of both mandatory and significant levels and are available twice a day, 00Z and 12Z.

The large data set is required for two reasons. First, due to the relatively rare occurrence of the extreme conditions (200 ft ceilings/ 0.5 mile visibility), a large data set ensures a statistically significant number of occurrences. Second, the data are broken into two subsets in order to develop the predictive equations with one set and independently verify the results with another.

The implementation of the Automated Surface Observing System (ASOS) program by the NWS in the middle to late 1990's had a significant effect on this research. The advantages of the automated systems are significant. The density of the surface



observation network in the US increased significantly both spatially and temporally. Increased spatial coverage results in smaller surface-based networks, which in turn are more representative of the conditions at the airfield of interest. Increased temporal resolution occurs as many part time observing stations (which were excluded from Vislocky and Fritsch's (1997) initial study) were transitioned into full time observing stations in the late 90's. This positively influences this study in two ways. First, stations which were previously ignored, could now be evaluated, once again increasing the spatial density. Second, more data are available for all hours of the day, resulting in evaluation of more cases of fog occurrence and dissipation. While these advantages assist in this work, problems also arise.

First, the system was not implemented instantaneously at each location. That is, there is a significant difference between the times in which each airfield's system came online. For this reason, stations fitted with ASOS's after 1998 are omitted from this study, even if they fell within the observations-based network, due to their lower data density. Second, the initial period of data received from the ASOS is often missing weather variables. These are two of the main factors for the development and implementation of missing data schemes.

3.2.2 Missing Surface Data. Missing data are broken up into three different categories, each of which is handled in a separate way. The goal of the missing data algorithms is two-fold. First, a scheme is developed to maximize the number of data points available for the study. Second, the replacement data needs to reflect the current meteorological



conditions at each station as accurately as possible. For this reason a three step missing data approach is implemented.

Step 1: Missing ceiling data due to the occurrence of fog. One of the most common occurrences of missing data is the lack of sky condition and/or ceiling height when fog is reported. For this reason ceiling, values are represented according to Table 5, data are missing with reduced visibility due to the occurrence of fog.

Step 2: Missing entire observation. If an entire surface observation is missing, a nearest reliable neighbor approach is used. A reliable neighbor is defined as a full time observing station throughout the entire data set. The nearest neighbor approach is used because it is the most physically significant replacement process available. Fog generally occurs in the cold season and is considered more of a synoptic scale rather than mesoscale event. For this reason surface weather conditions at nearby locations are typically similar enough (especially along the data dense east coast) to make this a sound meteorological argument. The exception is reduced visibility or ceiling conditions due to localized convective events or localized terrain influences, which are assumed to occur infrequently enough to not have a significant impact on this study.

TABLE 5. Binary Ceiling Replacement Values. The replacement values used for ceilings when the sky condition is missing from an observation and fog is reported.

| Observed Visibility    | Binary Ceiling Value |
|------------------------|----------------------|
|                        |                      |
| Vis <u>&lt;</u> 0.5 mi | Cig < 200 ft         |
| Vis ≤ 1.5 mi           | Cig < 1000 ft        |
| Vis ≤ 3 mi             | Cig < 3000 ft        |



Step 3: Missing individual weather data from an observation. This type of missing data occurs when single or multiple elements from a surface observation are missing. Data are replaced once again using the nearest neighbor approach, but this time only replacing the individual element.

The missing data schemes are only applied to predictors and never to the predictand. If the predictand is missing at any time, that occurrence is not included in the study for either model building or verification purposes. After the surface data is replaced missing upper air data algorithms are implemented.

3.2.3 Missing Upper Air Data. Missing upper air data are handled quite differently than missing surface data due to the relative sparseness of observations both spatially and temporally. Missing data are replaced using data from the upper air observation 24 hours earlier. Therefore, 00Z upper air observations are replaced with 00Z data the day prior. If the data are unavailable 24 hours ago, the event is not included in the study. Data from the previous 24 hours are used in order to best represent atmospheric conditions. Since observations are only taken twice a day, the 00Z data are not typically representative of the 12Z observations and visa versa.

This technique is applied as an accurate representation based on two factors. First, the synoptic situation typically associated with fog events is stable and not rapidly changing. Second, replacement algorithms are used infrequently enough in most cases to not have a significant effect on this research. The Dover AFB and McGuire AFB data sets each have 3.7% missing data rates. The Andrews AFB data set has a 12% missing



data rate, this case is a concern heading into equation development. Next examined is the processing of the data.

3.2.4 Data Assimilation and Manipulation. The first step in this procedure is setting up the surface networks for each of the airfields for each of the six hour increments. Vislocky and Fritsch (1997) concluded that the 10, 25, and 40 closest observing stations are the optimal number of stations to be used in 1, 3, and 6 hour forecasts. The optimal number of stations is interpolated as 19, 30, and 35 for the 2, 4, and 5 hour forecasts. Observational networks are built independently for each forecast location and time. The surface observing stations for the observational networks included in this study are for Dover AFB (KDOV), McGuire AFB (KWRI), and Andrews AFB (KADW) and are detailed in the Appendix.

Data processing is the main challenge of this exercise and is summarized in Figure 2. The first step is an evaluation of the airfield of interest for occurrence of the predictand value (e.g. ceiling less than 200 ft). If an observation has an occurrence below one of the predictand thresholds, it is extracted. The same observation may meet multiple criteria (i.e. ceiling below 200 ft and visibility less than 0.5 mi). In this case, the observation is used for all applicable predictand criteria. This experiment is set up to evaluate every case of fog that meets the criteria regardless of time or season.

The next step is an evaluation of network observations. The date time group of each of the 40 stations in the observations network is compared to the main station's date time group. Observations within an hour are extracted to a separate file. If no observation is available within an hour, it is left for missing data algorithms to replace.



The same process is then applied to the upper air and climatological data. With the extraction of the relevant data, the statistical approach is now reviewed.

### 3.3 Statistical Approach

3.3.1 Predictands. After the network is constructed new predictands are evaluated. As noted earlier, the predictands offered by Vislocky and Fritsch (1997) do not fit the needs

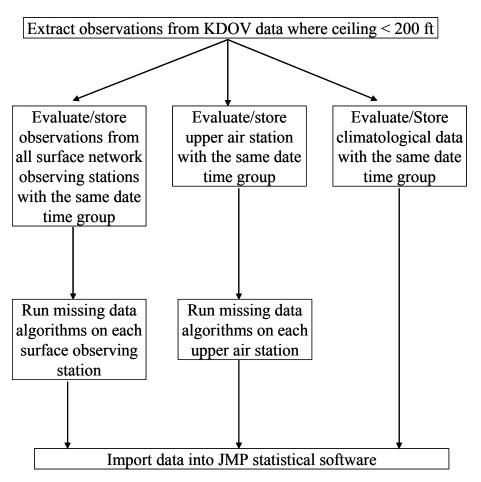


FIG 2. Flowchart for Data Manipulation.



of the 15 OWS, where the critical thresholds (200 ft ceilings and 0.5 mi visibility) are not addressed. This work evaluates predictands of 200 ft ceiling and 0.5 mile visibility at three airfields along the eastern seaboard of the US: McGuire AFB, Dover AFB, and Andrews AFB. Predictands are assigned a binary value of '1' for occurrence of an event and '0' for non-occurrence of event. Predictive equations are developed for each individual predictand at each airfield at hourly increments spanning one to six hours beyond the observation of fog occurrence. The predictors that influence the predictand forecast are now examined.

3.3.2 Predictors. This investigation deviates from Vislocky and Fritsch's (1997) work in terms of surface predictors. The main discrepancy is opaque cloud cover, which is omitted from this study. The reason for this is twofold. First, Vislocky and Fritsch's (1997) work used an earlier data set consisting of surface observations in SA (surface airways) format. These observations include more ceiling information than is currently reported in METAR observations (namely the presence or absence of a ceiling). Furthermore, SA ceilings were more subjective, that is, even if 8/10 of the sky were covered by clouds, an observer could determine it to not be a ceiling due to the lack of opacity. The second reason is inconsistency in remark data, especially reporting the eight and nine cloud groups which detail cloud amount and type. Since these are not present on a majority of observations, it is impossible to determine with the current available data the opacity of the sky.

A second difference in this research from Vislocky and Fritsch's (1997) is the use of altimeter setting rather than sea level pressure. The reason for this is that altimeter is



reported in all observations and sea level pressure is not always reported in the remarks of the data set. Since all stations are within a couple of hundred meters of sea level, the approximation of altimeter setting for sea level pressure is valid. Binary predictors are coded with a "dummy" value of '0' representing non-occurrence or '1' representing occurrence, and non-binary predictors maintain their observed values. Each set of 30 predictors (Table 6) is evaluated at each surface observing station within the observing network (the number of stations in each observations network varies with time).

TABLE 6. Surface Predictors for the 15 OWS AOR. The surface meteorological predictors used to create the observations-based forecasts for the 15 OWS AOR. All predictors are evaluated at each airfield in the specific network (which varies depending on the time of the forecast).

| Variable                     | Designator          |            | Non-Binary     |            |
|------------------------------|---------------------|------------|----------------|------------|
| v ariabic                    | Designator          | Occurrence | Non occurrence | Non-Binary |
| Sky Condition: Clear         | SKY (SKC)           | 1          | 0              |            |
| Sky Condition: Few/Scattered | SKY (FEW/SCT)       | 1          | 0              |            |
| Sky Condition: Broken        | SKY (BKN)           | 1          | 0              |            |
| Sky Condition: Overcast      | SKY (OVC)           | 1          | 0              |            |
| Sky Condition: Obscured      | SKY (OBSCURED)      | 1          | 0              |            |
| Precipitation                | PRECIP              | 1          | 0              |            |
| Ceiling Height < 200 ft      | CIG HT <200 FT      | 1          | 0              |            |
| Ceiling Height < 500 ft      | CIG HT <500 FT      | 1          | 0              |            |
| Ceiling Height < 1000 ft     | CIG HT <1000 FT     | 1          | 0              |            |
| Ceiling Height < 3000 ft     | CIG HT <3000 FT     | 1          | 0              |            |
| Ceiling Height < 6500 ft     | CIG HT <6500 FT     | 1          | 0              |            |
| Ceiling Height < 12000 ft    | CIG HT <12000 FT    | 1          | 0              |            |
| Visibility < 0.5 mi          | VIS < 800 M         | 1          | 0              |            |
| Visibility < 1 mi            | VIS < 1600 M        | 1          | 0              |            |
| Visibility < 3 mi            | VIS < 4800 M        | 1          | 0              |            |
| Visibility ≤ 5 mi            | VIS < 8000 M        | 1          | 0              |            |
| Visibility ≤ 7 mi            | VIS < 9999 M        | 1          | 0              |            |
| Visibility ≤ 10 mi           | VIS >= 9999 M       | 1          | 0              |            |
| Wind Direction: Variable     | WIND DIR (VRB)      | 1          | 0              |            |
| Wind Direction < 45          | WIND DIR (<45)      | 1          | 0              |            |
| Wind Direction < 90          | WIND DIR (<90)      | 1          | 0              |            |
| Wind Direction < 135         | WIND DIR (<135)     | 1          | 0              |            |
| Wind Direction < 180         | WIND DIR (<180)     | 1          | 0              |            |
| Wind Direction < 225         | WIND DIR (<225)     | 1          | 0              |            |
| Wind Direction < 270         | WIND DIR (<270)     | 1          | 0              |            |
| Wind Direction < 315         | WIND DIR (<315)     | 1          | 0              |            |
| Wind Direction < 360         | WIND DIR (<360)     | 1          | 0              |            |
| Dewpoint                     | DEWPOINT            |            |                | X          |
| Dewpoint Depression          | DEWPOINT DEPRESSION |            |                | X          |
| Altimeter Setting            | ALT                 |            |                | X          |



The upper air predictors follow the work of Hilliker and Fritsch (1999) and are available in Table 7. Each predictor is evaluated at six levels, surface, 1000 mb, 925 mb, 850 mb, 700 mb, and 500 mb, with the exception of static stability, which is evaluated in three layers: 1000 mb-850 mb, 1000 mb-925 mb, and 925 mb-850 mb. The binary predictors are coded in the same manner as the surface predictors. Upper air data from 00Z are used for fog occurrence times of 03Z-15Z (12Z data are used for the hours 15Z-03Z) in order to represent lag times in data availability, ensuring this method can be implemented operationally. The upper air sounding that is closest to each airfield of interest is used (Table 8) and is considered to be representative of the upper air conditions for the entire surface observation network.

Numerous climatological predictors are available for selection by the predictive equations. First among these are climatological frequencies of occurrence of

TABLE 7. Upper Air Predictors for the 15 OWS AOR. The upper air meteorological predictors used to create the observations-based forecasts for the 15 OWS AOR. All predictors are evaluated at each pressure with the exception of static stability, which is evaluated in the three layers.

| Variable                                | Designator                     |            | Non-Binary     |            |
|-----------------------------------------|--------------------------------|------------|----------------|------------|
| variable                                | Designator                     | Occurrence | Non occurrence | Non-Binary |
| Height                                  | НТ                             |            |                | X          |
| Temperature                             | T                              |            |                | X          |
| Relative Humidity ≥ 30%                 | RH > 30%                       | 1          | 0              |            |
| Relative Humidity ≥ 50%                 | RH > 50%                       | 1          | 0              |            |
| Relative Humidity ≥ 70%                 | RH > 70%                       | 1          | 0              |            |
| Relative Humidity ≥ 90%                 | RH > 90%                       | 1          | 0              |            |
| Wind Direction: 23° to < 68°            | WIND N                         | 1          | 0              |            |
| Wind Direction: 68° to < 113°           | WIND NE                        | 1          | 0              |            |
| Wind Direction: 113° to < 158°          | WIND E                         | 1          | 0              |            |
| Wind Direction: 158° to < 203°          | WIND SE                        | 1          | 0              |            |
| Wind Direction: 203° to < 248°          | WIND S                         | 1          | 0              |            |
| Wind Direction: 248° to < 293°          | WIND SW                        | 1          | 0              |            |
| Wind Direction: 293° to < 338°          | WIND W                         | 1          | 0              |            |
| Wind Direction: 338° to < 23°           | WIND NW                        | 1          | 0              |            |
| Wind Speed                              | WIND SPEED                     |            |                | X          |
| Static Stability (d0/dz): (1000-925 mb) | STATIC STABILITY (1000-925 MB) |            |                | X          |
| Static Stability (d0/dz): (1000-850 mb) | STATIC STABILITY (1000-850 MB) |            |                | X          |
| Static Stability (d0/dz): (925-850 mb)  | STATIC STABILITY (925-850 MB)  |            |                | X          |



TABLE 8. Upper Air Stations in the 15 OWS AOR. The three upper air stations used in equation development along with the airfield they represent.

| Airfield         | ICAO | Upper Air Station   | ICAO |
|------------------|------|---------------------|------|
| McGuire AFB (NJ) | KWRI | Brookhaven (NY)     | KOKX |
| Andrews AFB (VA) | KADW | Washington DC       | KIAD |
| Dover AFB (DE)   | KDOV | Wallops Island (MD) | KWAL |

ceiling and visibility threshold at the airfield of interest. Predictor values including 200 ft/0.25 mi, 500 ft/0.5 mi, 1000 ft/1.5 mi are extracted from the Operational Climatic Data Summary tables available through AFCCC. Sine and cosine of the day of the year are also included as predictors of solar radiation effects per Vislocky and Fritsch (1997).

A better understanding of the effect of solar radiation on the dissipation process is also included. Following the work of Campbell (1977), the maximum amount of incoming solar radiation reaching the surface of the earth for the time of year is calculated. These calculations do not take into account clouds above the fog and stratus; however, for this study it is assumed that all of this radiation is reaching the top of the cloud/fog layer. All of the climatological predictors are non-binary, and a summary is available in Table 9. Now that predictors and predictands are explained the statistical methods behind equation development is examined.

3.3.3 Equation Development. A least squares multiple linear regression model is used to develop six predictive equations for each of the two predictands at each airfield. The first assumption made in order to use linear regression is that errors are uncorrelated random variables with constant variance and zero for a mean (defined as



TABLE 9. Climatological Predictors for the 15 OWS AOR. The climatological predictors used to create the observations-based forecasts for the 15 OWS AOR. All predictors are evaluated at only the airfield of interest (either Dover AFB, McGuire AFB, or Andrews AFB).

| Variable                                | Designator       |            | Binary         | Non-Binary |
|-----------------------------------------|------------------|------------|----------------|------------|
| Variable                                | Designator       | Occurrence | Non occurrence | Non-Binary |
| Frequency of Occurrence: 200 ft/0.25 mi | CLIMO < 200/0#25 |            |                | X          |
| Frequency of Occurrence: 500 ft/0.5 mi  | CLIMO < 500/0#5  |            |                | X          |
| Frequency of Occurrence: 1000 ft/1.5 mi | CLIMO < 1000/1#5 |            |                | X          |
| Sine of the Day                         | SIN DAY          |            |                | X          |
| Cosine of the Day                       | COS DAY          |            |                | X          |
| Solar Radiation                         | SOLAR RADIATION  |            |                | X          |

homoscedasticity) (Montgomery and Runger 2003). Analysis of the residuals from each linear model can prove these assumptions valid. The residual of a regression model is defined:

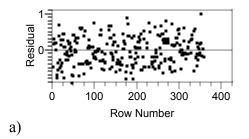
$$e_i = y_i - \hat{y}_i$$
  $i = 1, 2, ..., n$  (1)

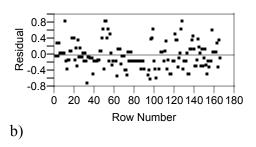
Where  $y_i$  is the observed value and  $\hat{y}_i$  is the fitted value obtained from the linear regression model. A randomly distributed residual scatter plot, e.g. showing no pattern or trend, verifies the above assumptions.

Figure 3 shows sample residual scatter plots for each of the three data sets. The above characteristic, a random scattering of points around the zero line, is present in the diagrams below. This leads to the conclusion that the models have a mean of zero and constant variance. The above test is performed on each of the 36 models individually.

The second assumption required to use linear regression is that the errors are normally distributed (Montgomery & Runger 2003). First, the Central Limit Theorem states that as a sample size gets larger (typically assumed to be greater than 30), the distribution tends towards normal (Montgomery & Runger 2003). A more precise way to check the distribution is by examining a normal probability plot of the residuals for each







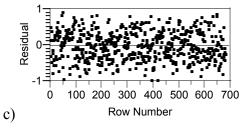


FIG. 3. Residual Plots from Data Sets. Residual plots from the KDOV Cig LT 200 ft (T+2) (a), KADW Cig LT 200 ft (T+2) (b), and KWRI Vis LT 0.5 mi (T+2) (c) data sets. These typical patterns show residual plots scattered and randomly distributed around the zero line, confirming the assumptions necessary to use linear regression.

of the 36 models. To assume normality, the residuals should fall along a straight line. Figure 4 shows two examples of normal probability plots. The first is from the Andrews AFB ceiling less than 200 ft forecast at one-hour (Fig. 4a). Notice the plot is in almost a normal distribution of residuals. The second example is from the Dover AFB ceiling less than 200 ft forecast at two-hours (Fig. 4b). Notice the plot falls essentially along a straight line, allowing the conclusion of normality (Montgomery & Runger 2003).

Table 10 lists the 36 derived models for this work and details the statistical tests run for each. Notice that 10 of the 36 models have errors which are not normally distributed (bold, column 2, Table 10). Six of the non-normal distributions are found in the Andrews AFB data set. Despite these discouraging indicators, regression models are nonetheless



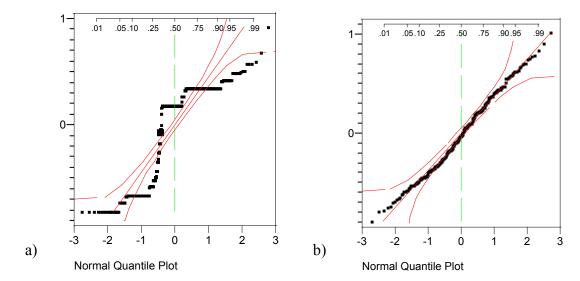


FIG. 4. Normal Probability Plots. Plots for KADW Cig LT 200 ft (T+1) (a) and KDOV Cig LT 200 ft (T+2) (b). Note the non-linear shape of the first model, leading to the conclusion of a lack of normalcy. Panel (b) exhibits a linear pattern, indicating a normal distribution of the residuals, which is a necessary assumption for linear regression. stair step pattern, not close to resembling a straight line. This is an example of a non-

developed and analysis of effects of the non-normal distributions is found in Chapter IV. A lack of homoscedasticity (e.g. heteroscedasticity) is present in only three of the models (bold, column 3, Table 10). However, as Neter et al. (1990) point out, if heteroscedasticity is inherent, the results obtained are still unbiased, consistent estimators, but no longer possess minimum variance. Since the KWRI Vis LT 0.5 mi (T+1) and KADW Cig LT 200 ft (T+1) possess neither homoscedacity nor normal distributions, these data are of particular concern going into model development.

Multiple linear regression examines the relationship between two or more variables (Montgomery and Runger 2003) with each equation taking the form:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$
 (2)



TABLE 10. Statistical Tests. Definitions of the 36 models derived in this study along with the results of the statistical tests for normality and heteroscedasticity needed to confirm assumptions necessary to use linear regression.

| Forecast                 | Normal | Homoscedasticity |
|--------------------------|--------|------------------|
| KDOV Cig LT 200 ft (T+1) | Yes    | Yes              |
| KDOV Cig LT 200 ft (T+2) | Yes    | Yes              |
| KDOV Cig LT 200 ft (T+3) | Yes    | Yes              |
| KDOV Cig LT 200 ft (T+4) | Yes    | Yes              |
| KDOV Cig LT 200 ft (T+5) | Yes    | Yes              |
| KDOV Cig LT 200 ft (T+6) | Yes    | Yes              |
| KDOV Vis LT 0.5 mi (T+1) | No     | Yes              |
| KDOV Vis LT 0.5 mi (T+2) | No     | Yes              |
| KDOV Vis LT 0.5 mi (T+3) | Yes    | Yes              |
| KDOV Vis LT 0.5 mi (T+4) | Yes    | Yes              |
| KDOV Vis LT 0.5 mi (T+5) | Yes    | Yes              |
| KDOV Vis LT 0.5 mi (T+6) | Yes    | Yes              |
| KWRI Cig LT 200 ft (T+1) | No     | Yes              |
| KWRI Cig LT 200 ft (T+2) | Yes    | Yes              |
| KWRI Cig LT 200 ft (T+3) | Yes    | Yes              |
| KWRI Cig LT 200 ft (T+4) | Yes    | Yes              |
| KWRI Cig LT 200 ft (T+5) | Yes    | Yes              |
| KWRI Cig LT 200 ft (T+6) | Yes    | Yes              |
| KWRI Vis LT 0.5 mi (T+1) | No     | No               |
| KWRI Vis LT 0.5 mi (T+2) | Yes    | Yes              |
| KWRI Vis LT 0.5 mi (T+3) | Yes    | Yes              |
| KWRI Vis LT 0.5 mi (T+4) | Yes    | Yes              |
| KWRI Vis LT 0.5 mi (T+5) | Yes    | Yes              |
| KWRI Vis LT 0.5 mi (T+6) | Yes    | Yes              |
| KADW Cig LT 200 ft (T+1) | No     | No               |
| KADW Cig LT 200 ft (T+2) | Yes    | No               |
| KADW Cig LT 200 ft (T+3) | No     | Yes              |
| KADW Cig LT 200 ft (T+4) | Yes    | Yes              |
| KADW Cig LT 200 ft (T+5) | Yes    | Yes              |
| KADW Cig LT 200 ft (T+6) | Yes    | Yes              |
| KADW Vis LT 0.5 mi (T+1) | No     | Yes              |
| KADW Vis LT 0.5 mi (T+2) | No     | Yes              |
| KADW Vis LT 0.5 mi (T+3) | No     | Yes              |
| KADW Vis LT 0.5 mi (T+4) | No     | Yes              |
| KADW Vis LT 0.5 mi (T+5) | Yes    | Yes              |
| KADW Vis LT 0.5 mi (T+6) | Yes    | Yes              |

where Y is the dependant or response variable, in this case, the predictand. Each x is a regressor variable, in this case the predictors, having a correlation with the dependant variable. Each  $\beta$  is a regression coefficient, calculated using a method of least squares,



which minimizes the error between the predictand (Y) and each predictor (x). The response variable is interpreted as the expected value of Y for any specific combination of x's, the regressor variables (Neter et al. 1990). For this reason, Y is interpreted as a probability forecast for future occurrence or non-occurrence of a particular meteorological event. Finally,  $\varepsilon$  is a random error term.

Predictors are added to the regression equations based on a mixed stepwise regression technique. A mixed stepwise technique adds regressor variables to the predictive equation one at a time based on the lowest F-statistic. As more variables are added, F-statistics are recomputed and regressor variables may be removed from the equation if their F-statistic value is increased based on interaction between terms. The major advantage to using a mixed stepwise technique over a forward technique is the ability to remove terms whose F-statistic value has increased after new terms are added. This takes into account interaction between predictors, thereby minimizing the chances of redundant or interactive predictors remaining in the final predictive equation.

The F-test is the criteria for adding a predictor to a stepwise regression (Montgomery and Runger 2003); there is no limit to the number of predictors in each equation, as long as they meet the F-test requirements (which are set stringently at P<0.001). The F-statistic is ratio between the sum of the square errors of the coefficients (β) and the mean square error (MSE) of the dependant variables (Montgomery and Runger 2003). For this reason, a minimized F-statistic produces a model with less error and is therefore most desirable. Surface and upper air predictors are added or removed individually to each regression equation based on the above method.



Development of a single equation for one predictand at a specific time in the future occurs as follows (Fig 5). Predictor sets from each network surface observing station, upper air level, and climatological data are first regressed individually against the predictand value (e.g. KDOV CIG LT 200 ft), using an F-test significance of 0.001. Each predictor that meets the strict 0.001 F-test significance level is then combined and regressed against the predictand once again, using a much looser significance level of F<0.1. Since all terms meet the original F-statistic criteria, the larger error rate is accepted simply to remove interactive or redundant terms. This procedure produces one regression equation for each predictand at each time interval.

To produce a single probabilistic forecast, data are fed into the regression equations, which predict a value between 0 and 1 that can be interpreted as a forecasted probability of occurrence (Vislocky and Fritsch 1997). For example, the occurrence of a ceiling less than 200 ft at Dover AFB is coded as a '1'. After the regression equation is calculated, the resulting value is the probability of the 200 ft ceiling existing at some future time. A problem with linear regression, as noted by Wilks (1995) is that in rare cases probabilities can fall outside of the 0 to 1 probability range. However, this is not a significant problem for the operational meteorologist, as forecast values outside of this range can be rounded to 0 or 1 and still produce accurate forecasts (Wilks 1995). All statistical analysis is performed using the JMP statistical software.

After predictive equations are developed, verification is required for each airfield for each predictand at each time period. Verification is accomplished on an independent data set. Each predictive equation is computed and the probability forecast value is compared with the conditional climatology forecast (once again obtained through



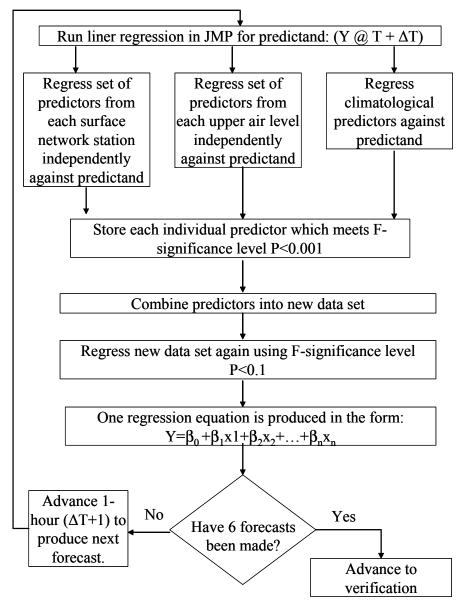


FIG 5. Linear Regression Flowchart.

AFCCC). Forecasts are produced for a one year independent data set for each fog occurrence using both the observations-based method and conditional climatology. This methodology is detailed in Figure 6.



Assessment of forecast accuracy is first made by calculating the mean square errors for both forecast methods. The MSE is the averaged squared difference between the forecast and actual event. The lower the MSE, the higher the accuracy of the forecast. A skill score was then calculated per Wilks (1995) to show the percent improvement of the

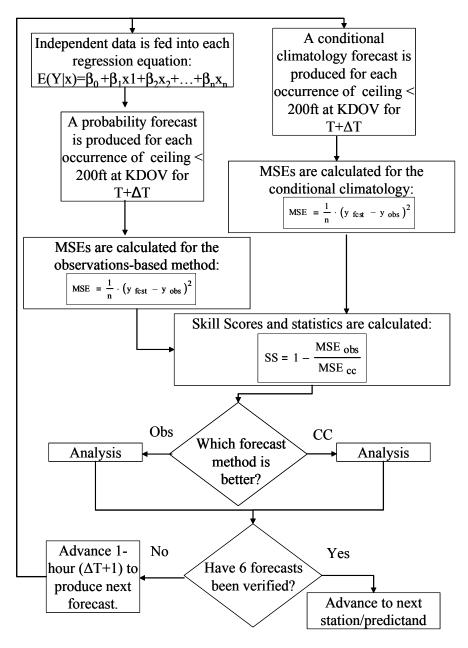


FIG 6. Verification Flowchart.



observations-based network over conditional climatology.

$$MSE = \frac{1}{n} \cdot \left( y_{fcst} - y_{obs} \right)^2$$
 (3)

$$SS = 1 - \frac{MSE_{obs}}{MSE_{cc}}$$
 (4)

Attempts are made to quantify the accuracy of the forecast in an operational environment. The first category evaluated is "bad forecasts," which is defined as a forecast with an absolute error greater than 0.50--e.g. more than 50% error between the forecast and observed conditions. A second assessment is made of "good forecasts." These are defined as having an absolute error of less than 0.30. In order for this methodology to be implemented operationally, good forecast must be the norm. Forecast probabilities between 30-60% have little operational value to the operational forecaster, regardless of the MSE. Mean square errors, number of good forecasts, and number of bad forecasts are computed for both the observations-based network and conditional climatology and are compared.

This chapter details the methodology employed to develop a forecast tool for accurate prediction of fog dissipation. An observations-based network consisting of surface observations, upper air observations, and climatological parameters is developed for the 15 OWS. A multiple linear regression model is implemented for each of the predictands at the three 15 OWS airfields.

The results of the research are now examined. The initial goal is to provide a superior forecast technique to conditional climatology. To accomplish this, 36 probabilistic forecasts are developed for the predictands listed in Table 10. The next



chapter details the successes and failures of the observations-based system and examines the characteristics of the predictive equations.



## IV. Analysis and Results

### 4.1 Overview

Predictive equations are developed using the aforementioned statistical technique for two predictands, ceiling less than 200 ft and visibility less than 0.5 mi, at each airfield, for hourly intervals one to six hours in the future, for a total of 36 predictive equations. Of the 36 equations, 16 are able to consistently better conditional climatology when analyzed against an independent data set.

This section provides predictive equations, verification statistics on the independent data set, analysis of the predictive equations, and development of trends.

Analysis on the successes and limitations of the technique are examined. Section 4.2 details the results obtained at Dover AFB, with the following sections looking at McGuire AFB and Andrews AFB individually. After each individual airfield is examined, underlying problems persistent throughout the forecast technique are thoroughly examined. Finally, examples of application of the methodology to real world situations are examined.

# 4.2 Dover AFB

4.2.1 Ceiling Less than 200 ft. Mean square errors are calculated using both conditional



climatology and the observations-based network for an independent one year sample of data consisting of approximately 45 occurrences and are graphed in Figure 7a. Note that the MSEs for the observations-based system are superior to conditional climatology at each forecast time. Note also decrease in the MSEs with time. While this is counter intuitive, the set up of the experiment results in this trend. Occurrences of ceilings below 200 ft and visibility less than 0.5 are rare and typically short-lived events, therefore, there is less variability in the observed conditions at the later hours (e.g. the observed condition is coded as a "0" representing non-occurrence for a majority of the events). The observations-based network and conditional climatology typically produce low forecast probabilities at these hours resulting in the decreased MSE with time. Three measures of forecast accuracy, as discussed in the methodology section, are also shown in Figures 7b-d.

First, skill scores for each forecast time are illustrated, with positive values indicating an improvement over climatology of the observations-based network. All six forecast times show significant improvement over conditional climatology. Forecast improvements range from 1.3% to 50%, with an average improvement of 15.8%. The bad forecast category (Fig. 7d) shows that the observations-based network is equal to or superior to conditional climatology at all six hourly forecasts. Bad forecasts range from 2-18 per hour for the observations-based network and 2-26 per hour for conditional climatology. The extreme case demonstrates conditional climatology can be inaccurate on over 50% of the forecasts. The final forecast measure, good forecasts (Fig. 7c), again demonstrates a significant improvement over conditional climatology. The only case where conditional climatology is better is at the 6-hour point where it is favored due to



the fact that 200 ft ceilings are typically a short-lived event. On average, the observations-based network produces 15% more good forecasts at each hourly interval.

Predictive equations for Dover AFB ceilings are available in Table 11. The number of predictors selected for each equation varies from 10 at the earliest times to 16 at the latest forecast hours. Standardized beta (std beta) values are included in order to gauge the relative strength of each predictor on each model. The highest absolute value among the standardized betas have the most influence on the forecast. Predictors are now examined for trends.

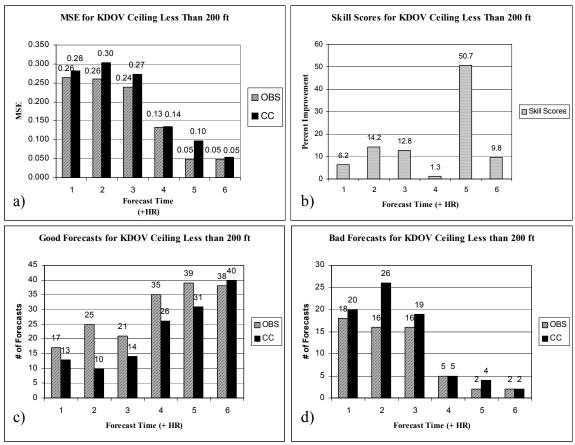


FIG. 7. Forecast Statistics for KDOV Ceiling Less than 200 ft. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.



TABLE 11. Forecast Equations for KDOV Ceiling Less than 200 ft. The first 3 hours of the forecast (a) and the last three (b).

| T+1 HR                        | HR                 |          | T+2 HR                      |              |          | T+3 HR                       | HR           |          |
|-------------------------------|--------------------|----------|-----------------------------|--------------|----------|------------------------------|--------------|----------|
| Predictor                     | Estimate (β)       | Std Beta | Predictor                   | Estimate (β) | Std Beta | Predictor                    | Estimate (β) | Std Beta |
| Intercept:                    | 0.700              | 0.000    | Intercept:                  | 0.055        | 0.000    | Intercept:                   | 0.327        | 0.000    |
| 700 MB T                      | -0.018             | -0.148   | KDOV SKY (OBSCURED)         | 0.055        | 0.120    | KDOV SKY (OBSCURED)          | 0.090        | 0.085    |
| KWWD CIG HT <3000 FT          | -0.410             | -0.160   | KGED PRECIP                 | 0.085        | -0.116   | KGED VIS $< 1600 \text{ M}$  | 0.193        | 0.138    |
| KWWD VIS >= 9999 M            | -0.112             | -0.097   | KWWD VIS < 1600 M           | 0.063        | 0.161    | KGED WIND DIR (<90)          | 0.173        | 0.1111   |
| KSBY VIS $>= 9999$ M          | -0.121             | -0.102   | KWWD DEWPOINT DEPRESSION    | 0.010        | -0.089   | KWWD VIS $< 1600 \mathrm{M}$ | 0.155        | 0.118    |
| KILG VIS $\Rightarrow$ 9999 M | -0.114             | -0.086   | KSBY WIND DIR (<270)        | 0.135        | -0.126   | KACY VIS $>= 9999 \text{ M}$ | -0.170       | -0.136   |
| KILG WIND DIR (<235)          | -0.495             | -0.193   | KACY SKY (OVC)              | 0.052        | 0.119    | KMTN SKY (SKC)               | 0.270        | 0.123    |
| KMIV WIND DIR (<90)           | 0.203              | 0.163    | KACY VIS >= 9999 M          | 0.064        | -0.104   | KNHK VIS $< 4800 \text{ M}$  | -0.133       | -0.122   |
| KGED CIG HT <3000 FT          | -0.383             | -0.123   | KNHK SKY (SKC)              | 0.096        | 0.119    | KNHK WIND SPEED              | -0.021       | -0.167   |
| KDOV SKY (OBSCURED)           | 0.153              | 0.139    | KADW WIND DIR (<90)         | 0.058        | 0.118    | KWAL WIND DIR (<45)          | 0.101        | 0.097    |
| KDOV VIS < 4800 M             | -0.139             | -0.101   | KWAL PRECIP                 | 0.082        | -0.099   | KWRI WIND DIR (<90)          | 0.103        | 0.094    |
|                               |                    |          | KWAL VIS >= 9999 M          | 0.054        | -0.144   | KABE SKY (SKC)               | -0.383       | -0.228   |
|                               |                    |          | KTTN CIG HT <500 FT         | 0.049        | 0.107    | KDAA CIG HT <200 FT          | 0.245        | 0.121    |
| a)                            |                    |          | 700 MB T                    | 0.006        | -0.212   | KDAA CIG HT <3000 FT         | -0.155       | -0.131   |
|                               |                    |          | KLNS PRECIP                 | 0.063        | -0.159   | KDCA SKY (SKC)               | 0.349        | 0.173    |
|                               |                    |          | KLNS WIND DIR (<90)         | 0.054        | 0.145    | KCXY WIND DIR (<90)          | 0.092        | 0.087    |
| T+4                           | T+4 HR             |          | T+5 HR                      |              |          | T+6 HR                       | IR.          |          |
| Predictor                     | Estimate $(\beta)$ | Std Beta | Predictor Es                | Estimate (β) | Std Beta | Predictor                    | Estimate (β) | Std Beta |
| Intercept:                    |                    |          | Intercept:                  | 0.005        | 0.000    | Intercept:                   | -0.219       | 0.000    |
| KILG WIND DIR (<45)           | 0.031              | 000      | KGED WIND DIR (<90)         | 0.178        | 0.129    | KMTN SKY (SKC)               | 0.256        | 0.152    |
| KVAY WIND DIR (<90)           | 0.074              | 0.075    | KWWD WIND DIR (<90)         | 0.112        | 0.111    | KVAY WIND DIR (<90)          | 0.112        | 0.141    |
| KNHK WIND DIR (<180)          | 0.260              | 0.259    | KPNE CIG HT <500 FT         | 0.137        | 0.165    | KNHK WIND DIR (<360)         | 0.202        | 0.128    |
| KADW WIND DIR (<90)           | -0.139             | -0.101   | KADW WIND DIR (<90)         | 0.112        | 0.115    | KWAL SKY (OBSCURED)          | 0.105        | 0.113    |
| KMFV VIS >= 9999 M            | 0.157              | 0.143    | KWAL SKY (OBSCURED)         | 0.115        | 0.110    | KWAL WIND DIR (<90)          | 0.189        | 0.189    |
| KNYG CIG HT <200 FT           | -0.157             | -0.169   | KRDG SKY (OBSCURED)         | 0.231        | 0.123    | KTTN CIG HT <500 FT          | 0.090        | 0.128    |
| KNYG VIS >= 9999 M            | 0.423              | 0.241    | KLNS PRECIP                 | -0.148       | -0.150   | KBLM VIS < 9999 M            | 0.163        | 0.120    |
| KIAD SKY (FEW/SCT)            | 0.212              | 0.231    | KBLM VIS < 9999 M           | 0.323        | 0.213    | KNYG CIG HT <200 FT          | 0.128        | 0.090    |
| KIAD WIND DIR (<135)          | 0.109              | 0.089    | KNYG CIG HT <200 FT         | 0.285        | 0.179    | KNYG VIS >= 9999 M           | 0.089        | 0.125    |
| KEZF VIS $\Rightarrow$ 9999 M | 0.234              | 0.108    | KNYG VIS >= 9999 M          | 0.093        | 0.115    | KEZF WIND DIR (<90)          | 0.233        | 0.148    |
| 700 MB T                      | 0.138              | 0.151    | KIAD WIND DIR (<90)         | 0.192        | 0.141    | KEWR VIS >= 9999 M           | 0.111        | 0.148    |
| 500  MB RH > 50%              | -0.015             | -0.133   | KEZF VIS $< 4800 \text{ M}$ | -0.115       | -0.120   | KFRG CIG HT <1000 FT         | 0.101        | 0.133    |
|                               | 0.167              | 0.119    | KCJR SKY (FEW/SCT)          | 0.116        | 0.090    | KLFI CIG HT <200 FT          | 0.108        | 0.088    |
|                               |                    |          | KFRG SKY (FEW/SCT)          | -0.214       | -0.087   | KPTB SKY (OVC)               | -0.123       | -0.177   |
| b)                            |                    |          | 700 MB T                    | -0.014       | -0.138   | KPTB CIG HT <200 FT          | 0.097        | 0.085    |
|                               |                    |          | 500 MB RH > 50%             | 0.198        | 0.156    | 500 MB T                     | -0.010       | -0.110   |



A successful trend is the KDOV SKY (OBSCURED) predictor showing up in the first few hours of the forecast. This is important because it is indicates a foggier situation that may persist longer into time. The standardized beta values decrease with time, indicating that this condition has less impact on the forecast as time advances. The least influential region for predictors comes from stations due west of Dover AFB. The early time periods demonstrate a uniformity of direction among the selected network stations, however, as time advances, stations to the southwest become more dominant in the equations. These trends are expected, since weather typically moves from west to east in mid latitudes. All geographical directions influence the earlier hours as the situation is stagnant under typically stable, light wind environment.

Another successful trend is the presence of at least one easterly wind predictor (bold, Table 11), which indicates a higher likelihood of ceilings remaining, due to low-level moisture advection from the Atlantic Ocean. These predictors maintain their strength throughout the six forecast hours. The fact that the only upper air predictors are temperature and moisture predictors, not wind predictors, indicates the model detects ceilings dissipated through lifting processes better than advective processes.

Of concern is the large number of occurrences of unrestricted visibility as a dissipation predictor. While unrestricted visibilities reported at stations close to Dover AFB indicate dissipation, stations further away indicate the persistence of the ceiling. While visibility and ceiling certainly have a correlation, it is a concern that this is one of the most influential predictors, especially in the early forecasts.

Overall, the ceiling forecasts for Dover AFB are very successful in defeating conditional climatology, producing low MSEs, a large number of good forecasts and a



small number of bad forecasts. Section 4.2.2 looks at the visibility less than 0.5 mi forecast for Dover AFB.

4.2.2 Visibility Less than 0.5 mi. The forecasts for visibility at Dover AFB are not as successful as the ceiling forecasts. Mean square errors are calculated for each forecast method and are displayed in Figure 8a. The MSEs for the observations-based network, while still relatively low, are higher than those for conditional climatology for each forecast time. While the observations network may still produce accurate forecasts, in this case conditional climatology is more accurate, when verified against the independent data set

The skill scores and forecast statistics determine if there are any advantages to the observations-based network. Figure 8b shows an average 39% decrease in skill for the observations-based network averages 8 more bad forecasts (out of a sample size of approximately 150) at each hour. While not a positive result, this is a better percentage of bad forecasts than conditional climatology exhibits on the ceiling forecasts. A positive sign for the observations-based network lies in the good forecasts. In the first hour forecast, the observations-based network produces 19 more good forecasts, and in the second hour they are even. Of the 100 times fog persisted into the one hour forecast, the observations-based network produced a good forecast 78 times. This is positive because the first couple of hours are typically the most critical and often highly variable.

Upon closer examination, the bad forecasts (e.g. higher MSEs) can be explained by the data. The first problem is overestimating non-occurrences of fog through all six



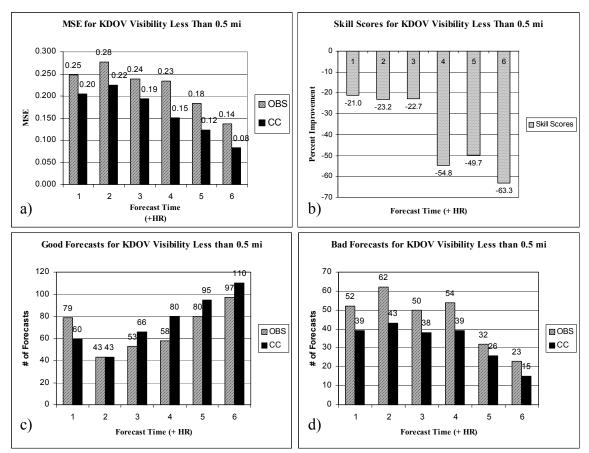


FIG. 8. Forecast Statistics for KDOV Visibility Less than 0.5 mi. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.

hours of the forecast. This is illustrated by the fact that the average predicted value of occurrence at the one-hour point is 76%. This results in the high number of misses on the situations where fog is not present, essentially driving up the false alarm rate and MSE. This problem of overestimating the probability of occurrence is magnified in the later forecasts as the actual chance of fog is more likely to be zero. The second reason for the higher MSE is a probability forecast of 1 or 0 being produced and the opposite value being observed. This problem is magnified by the set up of the experiment. That is if the observations network is not accurately forecasting fog for a particular event, it is very



likely to miss the occurrence of fog at all time intervals. Therefore the MSE is increased for each forecast hour. Examination of the predictive equations as shown in Table 12, could offer a possible physical explanation for the inferior forecasts.

Analyses of the equations reveal two significant factors most strongly influencing a dissipation forecast. This first is in the short-term (one to two hours and to a lesser extent the third hour forecast) and occurs at the Georgetown, DE observing station (KGED, bold in Table 12). Two to three values per forecast predict dissipation among these predictors (the negative estimates in the equations). Of particular note is the influence of broken sky conditions at KGED having one of the strongest correlations with dissipation (based on standardized beta values) at each of the first two hours.

Examination of the independent data set reveals that on occasions with inaccurate dissipation forecasts, these conditions are not present at KGED, which in turn keep the probability forecast at a higher level than it should be. With dissipation probability so closely tied to this one station, especially in the early forecasts, slight changes in meteorological parameters (e.g. sky condition broken versus overcast) have significant impact on producing an inaccurate dissipation forecast.

The second predictor subset leading to a dissipation forecast is wind direction between south and northwest (italicized in Table 12). Unfortunately, this condition is not present in a majority of cases where dissipation occurs. This is found throughout all forecasts and is related to these particular wind directions, regardless of station. This finding implies that this method has difficulty detecting dissipation unless the correct wind sector predictors are present.



TABLE 12. Forecast Equations for KDOV Visibility Less than 0.5 mi. The first 3 hours of the forecast (a) and last three (b).

| T+1 HR                      |                    |          |                          |              |             | T+3 HR                      | 2             |          |
|-----------------------------|--------------------|----------|--------------------------|--------------|-------------|-----------------------------|---------------|----------|
| Predictor                   | Estimate (B)       | Std Beta | Predictor                | Estimate (β) | 3) Std Beta | Predictor                   | Estimate (B)  | Std Beta |
| Intercept:                  | 0.664              | 0.000    | Intercept:               | -8.336       | 0.000       | Intercept:                  | -18.763       | 0.000    |
| KDOV SKY (OBSCURED)         | 0.061              | 0.067    | KGED SKY (BKN)           | -0.323       | -0.170      | KGEDVIS < 1600 M            | 0.112         | 0.087    |
| KDOV DEWPOINT               | -0.013             | -0.149   | KGED PRECIP              | -0.187       | -0.121      | KGED PRECIP                 | -0.189        | -0.122   |
| KGED SKY (BKN)              | -0.278             | -0.161   | KGED DEWPOINT DEPRESSION |              | -0.070      | KWWD WIND DIR (<90)         | 0.080         | 0.072    |
| KGED PRECIP                 | -0.178             | -0.125   | KWWD VIS < 1600 M        |              | 0.118       | KMIV WIND DIR (< 180)       | -0.145        | -0.074   |
| KWWD VIS < 1600 M           | 0.207              | 0.175    | KSBY PRECIP              | -0.232       | -0.167      | KBWIALT                     | -1.831        | -0.830   |
| KWWD WIND DIR (<315)        | -0.452             | -0.138   | KNHK CIG HT <1000 FT     | -0.196       | -0.126      | KVAY CIG HT <500 FT         | 0.069         | 0.069    |
| KSBY VIS < 800 M            | 0.134              | 0.144    | KNHK ALT                 | -2.266       | -1.041      | KNHK WIND DIR (<45)         | 080           | 0.078    |
| KACY CIG HT <6500 FT        | -0.377             | -0.082   | KADW WIND DIR (<315)     | -0.230       | -0.089      | KADW WIND DIR (<315)        | -0.262        | -0.101   |
| KACY WIND DIR (< 180)       | -0 184             | -0 118   | KADW DEWPOINT            | -0.023       | -0.254      | KWAL VIS < 800 M            | 0.249         | 0.239    |
| KBWI WIND DIR (<270)        | -0.365             | -0.127   | KWAL VIS < 800 M         | 0.150        | 0 145       | KWAL WIND DIR (<90)         | 0 107         | 080      |
| SEC RH > 90%                | 0.176              | 0.155    | KRDG PRECIP              | -0.072       | 090 0-      | KINS ALT                    | 2.535         | 1 134    |
| 700 MB WIND F               | 1800-              | 201.0    | KRDG CIG HT < 1000 FT    | 0.140        | 0.133       | KABE SKY (OVC)              | 0.123         | 0.107    |
|                             |                    |          | KPDG ALT                 | 2561         | 27.1        | KDAA SKY (OBSCITED)         | 0.150         | 0.137    |
|                             |                    |          | SET DH / 90%             | 200.7        | 5000        | SEC DH > 90%                | 0.137         | 0.122    |
| (8                          |                    |          |                          | 1            | 0.00        | 1000 MB HT                  | 0.00          | 0.173    |
| î                           |                    |          |                          |              |             | 925 MB HT<br>850 MB WIND NW | -0.003        | -0.344   |
| E                           | 6                  |          | THE COMMENT              |              |             |                             |               |          |
| I+4 HR<br>Predictor         | IK<br>Estimate (B) | Std Beta | Dradictor                | Fetimate (B) | Std Beta    | 1+6 HR<br>Predictor         | (Estimate (B) | Std Beta |
|                             |                    | 1        |                          |              | . [ ]       |                             | (2) 200       |          |
| Intercept:                  | -18.340            | 0.000    | ,                        | -19.012      | ,           | Intercept:                  | -21.599       | 0.000    |
| KGED VIS $< 1600 \text{ M}$ | 0.100              | 0.080    |                          | 0.059        |             | KDOV SKY (OBSCURED)         | 0.095         | 0.106    |
| KWWD SKY (BKN)              | -0.179             | -0.063   | 3 KGED VIS < 1600 M      | 0.122        | 0.103 K     | KDOV PRECIP                 | 0.129         | 0.121    |
| KSBY WIND DIR (<180)        | -0.250             | -0.191   | 1 KGED WIND DIR (<235)   | -0.128       | -0.095 K    | KWWD WIND DIR (<90)         | 0.159         | 0.160    |
| KSBY WIND DIR (<235)        | -0.166             | -0.113   | 3 KGED ALT               | -3.632       | -1.819 K    | KPNE VIS $< 1600 \text{ M}$ | 0.189         | 0.131    |
| KVAY WIND DIR (<90)         | 0.095              | 0.084    | 4 KMIV VIS >= 9999 M     | 0.205        | 0.132 K     | KVAY WIND DIR (<90)         | 0.097         | 0.094    |
| KWAL VIS < 800 M            | 0.167              | 0.167    | 7 KPNE VIS < 1600 M      | 0.200        | 0.133 K     | KNHK WIND DIR (VRB)         | 0.145         | 0.079    |
| KWAL VIS $< 1600 \text{ M}$ | 0.166              | 0.099    |                          | 0.083        | 0.086 K     | KNHK WIND DIR (<360)        | 0.125         | 0.068    |
| KTTN WIND SPEED             | 0.016              | 0.129    | 9 KNHK WIND DIR (<45)    | 0.115        | 0.122 K     | KWRI CIG HT <500 FT         | 0.101         | 0.112    |
| KABE SKY (OVC)              | 0.168              | 0.147    | 7 KNHK WIND DIR (<360)   | 0.146        | 0.078 K     | KWRI VIS < 800 M            | -0.099        | -0.102   |
| KCXY VIS < 9999 M           | -0.192             | -0.093   | 3 KWAL VIS < 800 M       | 0.146        | 0.153 K     | KWRI VIS $< 4800 \text{ M}$ | -0.166        | -0.172   |
| KCXY ALT                    | 0.661              | 0.303    | 3 KWAL VIS < 1600 M      | 0.153        | 0.097 K     | KLNS VIS < 8000 M           | 0.205         | 0.180    |
| KMDT CIG HT <1000 FT        | 0.088              | 0.083    | 3 KWAL WIND DIR (<90)    | 0.172        | 0.140 K     | KDCA VIS < 8000 M           | 0.116         | 0.117    |
| KTHV SKY (FEW/SCT)          | -0.168             | -0.080   | 0 KWAL ALT               | 3.997        | 1.962 K     | KTHV SKY (FEW/SCT)          | -0.188        | -0.097   |
| KMFV VIS $< 8000 \text{ M}$ | -0.110             | -0.077   | 7 KWRI CIG HT <500 FT    | 0.131        | 0.140 K     | KMFV CIG HT <200 FT         | 0.160         | 0.142    |
| KNYG PRECIP                 | -0.122             | -0.100   | 0 KWRI VIS < 8000 M      | 0.124        | 0.083 K     | KNYG CIG HT <12000 FT       | 0.160         | 0.095    |
| KNYG VIS $< 8000 \text{ M}$ | -0.158             | -0.124   | 4 KTTN VIS < 8000 M      | 0.145        | 0.120 K     | KCJR ALT                    | -1.452        | -0.731   |
| KNYG WIND DIR (<235)        | -0.135             | -0.094   |                          | 0.177        |             | KCHO ALT                    | 2.268         | 1.112    |
| KIAD WIND DIR (<90)         | 0.141              | 0.091    |                          | 1.855        |             | CLIMO < 500/0#50            | 0.081         | 0.384    |
| KEZF VIS < 4800 M           | -0.110             | 960.0-   | 6 KTHV ALT               | -1.565       | -0.740 C    | CLIMO < 1000/1#5            | -0.080        | -0.450   |
| CLIMO < 200/0#25            | 0.077              | 0.159    | 9 KMFV CIG HT <6500 FT   | -0.229       |             | 1000 MB HT                  | 0.001         | 0.152    |
| CLIMO < 1000/1#5            | -0.044             | -0.210   | 0 KCHO WIND DIR (<135)   | 0.218        |             | 925 MB HT                   | -0.003        | -0.395   |
| 925 MB HT                   | -0.001             | -0.133   | ,                        | -0.167       | -0.125      |                             |               |          |
| 850 MB RH > $50\%$          | -0.205             | -0.110   |                          | -0.148       | -0.141      |                             |               |          |
| <u></u>                     |                    |          | 925 MB HT                | -0.001       | -0.115      |                             |               |          |
|                             |                    |          |                          |              |             |                             |               |          |



**P** 

Finally, the equations developed for the first two forecast hours exhibit underlying problems in the model data set. Note from Table 10 these two data sets have distributions of errors which are not normal. This statistical problem helps explain some of the inaccuracies the first two models demonstrate.

Overall the forecasts for Dover AFB show promise, especially in the ceiling category. Although conditional climatology has a lower MSE, there are advantages to the visibility forecasts, especially when the good forecasts in the very short term are considered. The predictive equations for McGuire AFB are examined next.

#### 4.3 McGuire AFB

4.3.1 Ceiling Less than 200 ft. Mean square errors for the six forecast hours are illustrated in Figure 9a. The MSEs are smaller for the observations-based network for all six forecast hours. Examination of the skill scores (Fig. 9b) show improvement over conditional climatology for each of the six forecast hours ranging from 3%-49% with an average improvement of 22.5%. The number of good forecasts (Fig. 9c) is consistent with both forecast methods, averaging about 32 good forecasts out of approximately 55 samples. Aside from the skill score, the other distinctive advantage of the method is the minimization of bad forecasts (Fig 9d). Conditional climatology produces an average 6% more bad forecasts per hour.

An examination of the forecast equations (Table 13) leads one to conclude which variables produce the most accurate forecasts. First, as the forecast advances into the



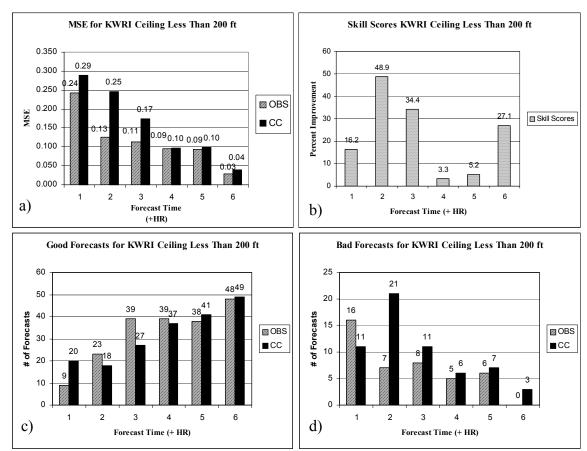


FIG. 9. Forecast Statistics for KWRI Ceiling Less than 200 ft. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.

future, the climatological factors are among the stronger predictors influencing the equations. This is expected, since in general, as the forecast time increases, the relevance of the current observation decreases. Second, the geographic region of the predictor station relative to McGuire AFB has a significant influence, especially as time increases. Stations from the southwest and west dominate the predictive equations, especially in the later stages. This is consistent with the findings for the ceiling at Dover AFB, where the southwest and west stations dominate the predictive equations at the longer time periods. Of the 96 predictors in the six equations, wind predictors dominate as 43 (indicated in



TABLE 13. Forecast Equations for KWRI Ceiling Less than 200 ft. The first 3 hours of the forecast (a) and the last three (b).

| T+1 HR                                  |                    |                  | T+2 HR                                  |                            |         | T+3 HR               |                            |         |
|-----------------------------------------|--------------------|------------------|-----------------------------------------|----------------------------|---------|----------------------|----------------------------|---------|
| Predictor                               | Estimate $(\beta)$ | St Beta          | Predictor                               | Estimate $(\beta)$ St Beta | St Beta | Predictor            | Estimate $(\beta)$ St Beta | St Beta |
| Intercept:                              | 0.617              | 0.000 Intercept: | tercept:                                | 0.439                      | 0.000   | 0.000 Intercept:     | 0.101                      | 0.000   |
| KWRI VIS < 800 M                        | 0.220              | 0.220 K          | KWRI VIS < 800 M                        | 0.092                      | 0.094   | KBLM SKY (OVC)       | 0.116                      | 0.125   |
| KPNE CIG HT <1000 FT                    | -0.258             | -0.129 K         | KACY WIND DIR (<45)                     | 0.162                      | 0.161   | KBLM WIND DIR (<235) | 0.200                      | 0.149   |
| KACY WIND SPEED                         | -0.027             | -0.170 <b>K</b>  | KILG WIND DIR (<235)                    | -0.166                     | -0.109  | KTTN VIS < 1600 M    | 0.119                      | 0.101   |
| KACY DEWPOINT DEPRESSION                | -0.064             | -0.129 <b>K</b>  | KEWR WIND DIR (<270)                    | -0.128                     | -0.091  | KPNE CIG HT <200 FT  | 0.058                      | 0.061   |
| KMIV VIS $\Rightarrow$ 9999 M           | -0.129             | -0.106 <b>K</b>  | KWWD WIND SPEED                         | -0.020                     | -0.145  | KPNE VIS < 800 M     | -0.146                     | -0.141  |
| KMIV DEWPOINT DEPRESSION                | -0.056             | -0.139 K         | KTEB WIND DIR (<135)                    | 0.262                      | 0.156   | KACY CIG HT <500 FT  | 0.190                      | 0.194   |
| KILG WIND DIR (<90)                     | 0.153              | 0.129 K          | KTEB DEWPOINT DEPRESSION                | -0.039                     | -0.154  | KACY WIND SPEED      | -0.030                     | -0.210  |
| 1000 MB WIND SE                         | 0.183              | 0.157 K          | KISP PRECIP                             | 0.294                      | 0.154   | KMIV CIG HT <200 FT  | 0.128                      | 0.132   |
| 850~MB~RH > 70%                         | -0.201             | -0.149 K         | KFRG VIS < 800 M                        | 0.254                      | 0.190   | KILG SKY (OVC)       | -0.181                     | -0.205  |
|                                         |                    | 11               | 1000 MB WIND SW                         | -0.251                     | -0.167  | KACY WIND DIR (<90)  | -0.274                     | -0.122  |
|                                         |                    | 8;               | 850 MB RH > 70%                         | -0.133                     | -0.100  | KCDW WIND DIR (<180) | 0.387                      | 0.124   |
|                                         |                    | S                | SOLAR RADIATION                         | -0.004                     | -0.131  | KFRG WIND DIR (<235) | -0.249                     | -0.189  |
|                                         |                    |                  |                                         |                            |         | KRDG WIND DIR (<90)  | 0.337                      | 0.265   |
|                                         |                    |                  |                                         |                            |         | KLNS WIND DIR (<235) | 0.226                      | 0.143   |
| (8)                                     |                    |                  |                                         |                            |         | KMGJ WIND DIR (<135) | 0.230                      | 0.169   |
| (m                                      |                    |                  |                                         |                            |         | 1000 MB WIND SE      | 0.149                      | 0.151   |
|                                         |                    |                  |                                         |                            |         | 1000 MB WIND S       | 0.112                      | 0.116   |
| T+4 HR                                  |                    |                  | T+5 HR                                  |                            |         | T+6 HR               |                            |         |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                            |         | , ((())              |                            |         |

| T+4 HR                      |                            |         | T+5 HR                      |                            |         | T+6 HR                   |                            |         |
|-----------------------------|----------------------------|---------|-----------------------------|----------------------------|---------|--------------------------|----------------------------|---------|
| Predictor                   | Estimate $(\beta)$ St Beta | St Beta | Predictor                   | Estimate $(\beta)$ St Beta | St Beta | Predictor                | Estimate $(\beta)$ St Beta | St Beta |
| Intercept:                  | 0.284                      | 0.000 I | 0.000 Intercept:            | 0.379                      | 0.000   | Intercept:               | 0.185                      | 0.000   |
| KPNE CIG HT <200 FT         | 0.088                      | 0.105 E | KVAY PRECIP                 | 0.131                      | 0.103   | KWRI VIS < 800 M         | 0.054                      | 0.100   |
| KPNE VIS $< 800 \text{ M}$  | -0.137                     | -0.153  | KVAY WIND DIR (<180)        | 0.166                      | 0.099   | KVAY CIG HT <200 FT      | -0.085                     | -0.158  |
| KMIV VIS $< 1600 \text{ M}$ | 0.191                      | 0.159 F | KVAY DEWPOINT               | -0.008                     | -0.169  | KVAY DEWPOINT DEPRESSION | 0.010                      | 0.212   |
| KEWR SKY (OBSCURED)         | 0.147                      |         | KABE DEWPOINT               | 0.015                      | 0.300   | KBLM SKY (OBSCURED)      | 0.176                      | 0.119   |
| KCDW WIND DIR (<180)        | 0.468                      | 0.177 F | KEWR SKY (OBSCURED)         | 0.153                      | 0.138   | KPNE CIG HT <200 FT      | 0.145                      | 0.243   |
| KLGA WIND SPEED             | -0.009                     |         | KWWD WIND SPEED             | -0.025                     | -0.276  | KPNE VIS < 800 M         | -0.136                     | -0.213  |
| KDOV CIG HT <200 FT         | 0.125                      | 0.122 F | KFRG CIG HT <500 FT         | 0.069                      | 0.091   | KFRG CIG HT <500 FT      | 0.079                      | 0.127   |
| KFRG CIG HT <500 FT         | 0.163                      | 0.190   | KRDG WIND DIR (<90)         | 0.137                      | 0.142   | KFRG WIND DIR (<135)     | -0.083                     | -0.098  |
| KRDG WIND DIR (<90)         | 0.291                      | 0.267   | KLNS WIND DIR (<90)         | 0.124                      | 0.159   | KLNS DEWPOINT            | -0.008                     | -0.212  |
| KLNS WIND DIR (<90)         | 0.078                      | 0.089 F | KDXR CIG HT <1000 FT        | 0.092                      | 0.128   | KAVP PRECIP              | -0.135                     | -0.150  |
| KGED WIND SPEED             | -0.019                     |         | KDXR WIND DIR (<135)        | 0.154                      | 0.138   | KAVP DEWPOINT            | 0.012                      | 0.310   |
| KMGJ CIG HT <3000 FT        | 0.141                      |         | KDXR WIND DIR (<180)        | 0.138                      | 0.112   | KDXR WIND DIR (<135)     | 0.123                      | 0.139   |
| KMGJ WIND DIR (<135)        | 0.152                      | 32      | KMTN WIND DIR (VRB)         | 0.440                      | 0.171   | KFOK WIND DIR (<135)     | 0.089                      | 0.131   |
| KDXR WIND DIR (<180)        | 0.155                      |         | KBWI WIND DIR (<180)        | 0.182                      | 0.099   | KMTN SKY (OVC)           | 0.046                      | 0.082   |
| KBWI WIND DIR (<180)        | 0.274                      |         | KADW CIG HT <200 FT         | 0.147                      | 0.091   | KBWI WIND DIR (<180)     | 0.173                      | 0.117   |
| CLIMO < 200/0#25            | 0.051                      | _       | KDCA VIS $< 8000 \text{ M}$ | 0.070                      | 0.072   | KADW CIG HT <200 FT      | 0.212                      | 0.162   |
| CLIMO < 1000/1#5            | -0.025                     | Ĭ       | CLIMO < 200/0#25            | 0.057                      | 0.241   | KDCA VIS < 8000 M        | 0.073                      | 0.091   |
| 700 MB WIND S               | -0.244                     | -0.118  | CLIMO < 1000/1#5            | -0.038                     | -0.357  | KCXY CIG HT <500 FT      | 0.133                      | 0.194   |
| 3                           |                            |         | 700 MB WIND S               | -0.149                     | -0.081  | KTHV SKY (BKN)           | 0.150                      | 0.156   |
| 0)                          |                            |         |                             |                            |         | CLIMO < 1000/1#5         | -0.012                     | -0.156  |
|                             |                            |         |                             |                            |         | 1000 MB WIND SPEED       | -0.006                     | -0.135  |



bold in Table 13) are based on wind speed or direction. Wind speed and dew point depression, have a significant effect on the prediction of dissipation, especially in the earlier forecast hours. These are positive signs, since they are two of the most important meteorological parameters indicating dissipation. Also of note is the higher number of upper level predictors as compared to the Dover AFB ceiling forecast equations.

A final factor indicating the strength and accuracy of this model is the lack of dependence on erroneous predictors. Whereas the Dover AFB ceiling forecast appears overly dependant on visibility predictors, relatively few are included in McGuire AFB's ceiling forecast. The equations are heavily influenced by wind, moisture, ceiling, and sky condition predictors as would be expected with a ceiling forecast model. Next examined is the McGuire AFB visibility forecast that exhibits some advantages despite not being as strong as the ceiling forecast.

4.3.2 Visibility Less than 0.5 mi. Mean square errors for both forecast techniques are shown in Figure 10a. Half of the forecasts of the observations-based network are superior, while the other three favor conditional climatology. The three-hour forecast shows the largest difference in MSE, likely due to the large difference in number of bad forecasts between the two techniques (Fig. 10d). Removing the three-hour forecast leaves the overall average MSEs almost even. Figure 10b shows a wide variety of range among the skill scores, from an improvement of 34% in the observations-based network to a decrease in skill of 14%, with an average increase of 3%. The observations-based network shows a higher number of good forecasts for the first half of the forecast period while conditional climatology becomes superior at the later forecast hours (Fig. 10c).



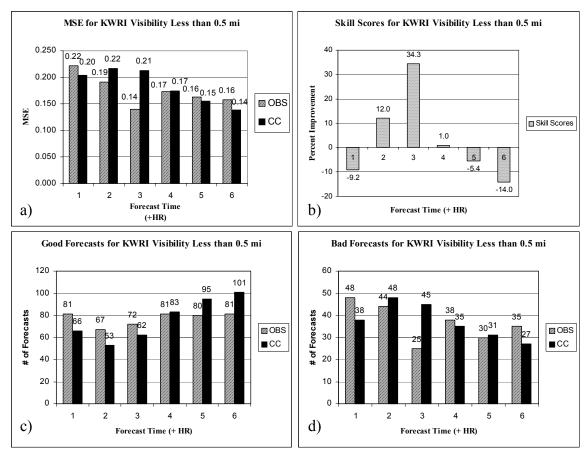


FIG. 10. Forecast Statistics for KWRI Visibility Less than 0.5 mi. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.

The equations for each forecast are in Table 14. There are two significant differences when comparing the one-hour forecast equation to the 2, 3, and 4 hour forecast equations, which are the successful equations. The first, and least significant, is the absence of any climatological parameters. Climatological parameters are not believed to be the main source of error in equation one because they are typically more influential on the later forecasts. The second major ingredient missing is the presence of any dew point or dew point depression parameters from the one-hour equation. At least one or more of these predictors generally appear in all of the other equations and are the most



important factors in fog formation or dissipation. This is believed to be the reason for the low skill score (Fig. 10b) in the one-hour forecast. However, there are still advantages to the one hour forecast, including its producing 81 good forecasts (Fig. 10c) out of 150, significantly more than the 66 issued by conditional climatology.

The five and six-hour equations also have negative skill score, however moisture and climatological parameters are included in them. The reason for the decrease in skill score in this case is over prediction of the event. While bad forecasts (Absolute Error > 50%) are comparable with conditional climatology, forecast values between 30%-50% produce a large forecast error. Due to conditional climatology generally converging to zero at the later hours, it produces lower MSEs in the five to six hour period. For example, in the five hour forecast, the average predicted value using the observations-based network is 21% while the conditional climatology average is 17%. The lower average forecast value produces the lower MSE when over 75% of the observations are for non-occurrence of the event.

The most influential geographical region, as evidenced in the 2, 3, and 4-hour forecasts, is southwest. This is another factor in the degradation of the forecast skill in the 5 and 6-hour forecasts. A more omni-directional sampling of station data is evident at the longer hours, which is contrary to successful forecasts which are typically heavily based on the westerly and southwesterly observations. The lack of influence of the dominant flow on the later hour forecasts likely results in the decreased skill scores at these times.

Note that the upper air predictors are some of the weakest throughout the forecast period, while the climatological predictors, which appear in five of the six equations, are



TABLE 14. Forecast Equations for KWRI Visibility Less than 0.5 mi. The first 3 hours of the forecast (a) and last three (b).

| T+1 HR               | IR                          |          | T+2 HR                   |                             |          | T+3 HR                      |                             |          |
|----------------------|-----------------------------|----------|--------------------------|-----------------------------|----------|-----------------------------|-----------------------------|----------|
| Predictor            | Estimate $(\beta)$ Std Beta | Std Beta | Predictor                | Estimate $(\beta)$ Std Beta | Std Beta | Predictor                   | Estimate $(\beta)$ Std Beta | Std Beta |
| Intercept:           | 0.691                       | 0.000    | Intercept:               | 1.034                       | 0.000    | Intercept:                  | 0.971                       | 0.000    |
| KWRI CIG HT <500 FT  | 0.072                       | 0.077    | KWRI SKY (SKC)           | 0.584                       | 0.122    | KWRI WIND DIR (<270)        | -0.180                      | -0.095   |
| KWRI WIND DIR (VRB)  | 690.0                       | 0.069    | KWRI WIND DIR (<135)     | -0.102                      | -0.074   | KWRI DEWPOINT DEPRESSION    | -0.068                      | -0.062   |
| KWRI WIND DIR (<90)  | 0.151                       | 0.119    | KVAY PRECIP              | -0.101                      | -0.070   | KVAY CIG HT <200 FT         | -0.110                      | -0.111   |
| KVAY CIG HT <200 FT  | -0.114                      | -0.115   | KVAY WIND DIR (<270)     | -0.358                      | -0.122   | KMIV DEWPOINT               | -0.023                      | -0.382   |
| KVAY CIG HT <3000 FT | -0.341                      | -0.127   | KBLM DEWPOINT            | -0.009                      | -0.146   | KMIV SKY (OBSCURED)         | 0.184                       | 0.159    |
| KBLM WIND DIR (<360) | -0.170                      | -0.083   | KTTN WIND DIR (<315)     | -0.212                      | -0.090   | KMIV VIS $< 1600 \text{ M}$ | 0.174                       | 0.145    |
| KTTN WIND DIR (<235) | -0.204                      | -0.112   | KPNE CIG HT <3000 FT     | -0.200                      | -0.086   | KCDW CIG HT <6500 FT        | -0.221                      | -0.085   |
| KTTN WIND DIR (<315) | -0.273                      | -0.123   | KPHL WIND DIR (<45)      | 0.088                       | 0.073    | KCDW WIND DIR (<180)        | 0.242                       | 0.111    |
| KPNE CIG HT <3000 FT | -0.215                      | -0.100   | KACY DEWPOINT DEPRESSION | -0.037                      | -0.126   | KLGA CIG HT <500 FT         | 0.151                       | 0.143    |
| KPNE CIG HT <6500 FT | -0.209                      | -0.073   | KMIV SKY (OBSCURED)      | 0.100                       | 0.081    | KWWD WIND DIR (<315)        | -0.181                      | -0.088   |
| KACY VIS < 800 M     | 0.118                       | 0.116    | KMIV WIND DIR (<135)     | 0.123                       | 0.092    | KISP WIND DIR (<360)        | -0.226                      | -0.087   |
| KACY VIS $>= 9999 M$ | -0.105                      | -0.098   | KMIV DEWPOINT            | -0.027                      | -0.415   | KDOV SKY (FEW/SCT)          | 0.117                       | 0.109    |
| KMIV VIS $>= 9999$ M | -0.084                      | -0.072   | KILG SKY (OVC)           | -0.068                      | -0.068   | KRDG SKY (SKC)              | 0.115                       | 0.089    |
| KILG SKY (OBSCURED)  | 0.091                       | 0.074    | KILG CIG HT <200 FT      | -0.121                      | -0.081   | KLNS CIG HT <500 FT         | 0.127                       | 0.116    |
|                      |                             |          | KABE WIND DIR (<90)      | 0.134                       | 0.124    | KLNS WIND DIR (<90)         | 0.093                       | 0.090    |
|                      |                             |          | KCDW WIND DIR (<180)     | 0.209                       | 0.088    | KMGJ VIS $< 1600 \text{ M}$ | 0.122                       | 0.068    |
|                      |                             |          | KJFK WIND DIR (<135)     | 0.182                       | 0.134    | SOLAR RADIATION             | -0.003                      | -0.093   |
|                      |                             |          | KJFK DEWPOINT            | 0.024                       | 0.375    | CLIMO < 200/0#25            | 0.104                       | 0.331    |
|                      |                             |          | KWWD CIG HT <200 FT      | 0.165                       | 0.153    | CLIMO < 1000/1#5            | -0.066                      | -0.484   |
|                      |                             |          | KTEB WIND DIR (<360)     | -0.220                      | -0.108   | SFC T                       | 0.016                       | 0.298    |
| (8)                  |                             |          | CLIMO < 200/0#25         | 0.100                       | 0.296    |                             |                             |          |
| (n)                  |                             |          | CLIMO < 1000/1#5         | -0.054                      | -0.369   |                             |                             |          |
|                      |                             |          | SFC WIND E               | 0.104                       | 0.083    |                             |                             |          |
|                      |                             |          | 925 MB RH > 30%          | -0.140                      | -0.089   |                             |                             |          |



| T+4 HR                      |              |          | T+5 HR                      |              |          | T+6 HR                   |              |          |
|-----------------------------|--------------|----------|-----------------------------|--------------|----------|--------------------------|--------------|----------|
| Predictor                   | Estimate (β) | Std Beta | Predictor                   | Estimate (β) | Std Beta | Predictor                | Estimate (β) | Std Beta |
| Intercept:                  | -4.283       | 0.000    | Intercept:                  | 0.295        | 0.000    | Intercept:               | -3.362       | 0.000    |
| KVAY CIG HT <200 FT         | -0.109       | -0.123   | KWRI PRECIP                 | 0.069        | 0.065    | KWRI SKY (OVC)           | -0.054       | -0.076   |
| KVAY CIG HT <12000 FT       | -0.185       | -0.060   | KVAY CIG HT <500 FT         | 0.057        | 0.074    | KVAY CIG HT <200 FT      | -0.090       | -0.126   |
| KVAY DEWPOINT               | -0.012       | -0.235   | KVAY DEWPOINT DEPRESSION    | 0.010        | 0.134    | KVAY DEWPOINT DEPRESSION | 0.009        | 0.133    |
| KTTN VIS $< 800 \text{ M}$  | 0.113        | 0.121    | KBLM SKY (FEW/SCT)          | 0.067        | 0.061    | KACY SKY (OBSCURED)      | 090.0        | 0.074    |
| KACY SKY (OBSCURED)         | 0.118        | 0.118    | KBLM VIS $< 1600 \text{ M}$ | 0.138        | 0.109    | KILG PRECIP              | 0.072        | 0.071    |
| KMIV SKY (OBSCURED)         | 0.084        | 0.081    | KPHL VIS < 4800 M           | 0.067        | 0.073    | KABE DEWPOINT DEPRESSION | 0.014        | 0.090    |
| KMIV VIS $< 1600 \text{ M}$ | 0.072        | 0.066    | KACY SKY (OBSCURED)         | 0.062        | 0.068    | KLGA WIND DIR (VRB)      | 0.227        | 0.087    |
| KMIV DEWPOINT               | -0.012       | -0.226   | KMIV SKY (OBSCURED)         | 0.068        | 0.073    | KLGA WIND DIR (<135)     | 0.148        | 0.119    |
| KILG WIND DIR (<45)         | 0.051        | 0.052    | KILG CIG HT <500 FT         | 0.051        | 0.061    | KWWD CIG HT <200 FT      | 0.063        | 0.087    |
| KILG WIND DIR (<180)        | 0.128        | 0.090    | KILG WIND DIR (<180)        | 0.126        | 0.098    | KWWD WIND DIR (<135)     | 0.076        | 0.082    |
| KABE DEWPOINT DEPRESSION    | 0.028        | 0.141    | KABE DEWPOINT DEPRESSION    | 0.014        | 0.079    | KISP CIG HT <500 FT      | 0.055        | 0.077    |
| KCDW WIND DIR (<180)        | 0.160        | 0.081    | KLGA WIND DIR (VRB)         | 0.265        | 0.091    | KFRG CIG HT <500 FT      | 0.065        | 0.092    |
| KJFK VIS < 8000 M           | 0.122        | 0.098    | KLGA WIND DIR (<135)        | 0.145        | 0.103    | KRDG SKY (FEW/SCT)       | -0.062       | -0.059   |
| KLGA WIND DIR (<135)        | 0.101        | 0.065    | KWWD WIND DIR (<135)        | 960.0        | 0.091    | KLNS ALT                 | 0.125        | 990.0    |
| KWWD WIND DIR (<135)        | 0.083        | 0.070    | KDOV SKY (SKC)              | 0.249        | 0.139    | KGED WIND DIR (<135)     | 0.076        | 0.064    |
| KISP CIG HT <500 FT         | 0.083        | 0.094    | KDOV SKY (FEW/SCT)          | 0.065        | 0.075    | KMGJ SKY (FEW/SCT)       | 0.171        | 0.122    |
| KISP CIG HT <1000 FT        | 0.150        | 0.140    | KRDG SKY (SKC)              | 0.186        | 0.179    | KDXR WIND DIR (<135)     | 0.109        | 0.110    |
| KISP WIND DIR (<360)        | -0.138       | -0.060   | KRDG CIG HT <500 FT         | 980.0        | 980.0    | KFOK PRECIP              | -0.113       | -0.119   |
| KFRG CIG HT <500 FT         | 0.147        | 0.166    | KGED WIND DIR (<135)        | 0.074        | 0.054    | KFOK DEWPOINT            | 0.011        | 0.256    |
| KFRG ALT                    | 0.163        | 0.077    | KDXR WIND DIR (<135)        | 0.088        | 0.078    | KMSV VIS >= 9999 M       | 0.077        | 0.110    |
| KDOV SKY (FEW/SCT)          | 0.077        | 0.080    | KMSV DEWPOINT DEPRESSION    | 0.030        | 0.110    | KMSV DEWPOINT DEPRESSION | 0.037        | 0.148    |
| KRDG VIS $< 800 \text{ M}$  | 0.094        | 0.074    | KPOU CIG HT <500 FT         | 0.111        | 0.099    | KPOU CIG HT <500 FT      | 0.086        | 0.087    |
| KRDG WIND DIR (<90)         | 0.205        | 0.171    | KSBY SKY (OVC)              | -0.083       | -0.103   | KSBY SKY (OVC)           | -0.074       | -0.103   |
| KSWF VIS $< 8000 \text{ M}$ | 0.115        | 0.097    | KADW CIG HT <200 FT         | 0.221        | 0.104    | KSBY DEWPOINT            | -0.014       | -0.297   |
| KSWF WIND DIR (<90)         | -0.186       | -0.125   | CLIMO < 200/0#25            | 0.033        | 0.127    | KCXY SKY (SKC)           | 0.086        | 0.090    |
| COS DAY                     | -0.081       | -0.149   | CLIMO < 1000/1#5            | -0.036       | -0.317   | KCXY CIG HT <500 FT      | 0.106        | 0.129    |
| CLIMO < 200/0#25            | 0.068        | 0.240    | SFC RH > 90%                | 0.056        | 0.074    | KTHV VIS $>= 9999$ M     | -0.135       | -0.174   |
| CLIMO < 1000/1#5            | -0.053       | -0.425   | 850 MB RH > 50%             | -0.061       | -0.058   | CLIMO < 1000/1#5         | -0.026       | -0.268   |
| SFC T                       | 0.018        | 0.371    | 850 MB WIND S               | 0.082        | 0.074    | SFC RH > 90%             | 0.071        | 0.105    |
| 1000 MB WIND NW             | 0.240        | 0.124    | 700 MB RH > 70%             | -0.090       | -0.096   | SFC WIND NW              | 0.142        | 0.061    |
| 925 MB RH > 30%             | -0.104       | -0.080   |                             |              |          | 850 MB WIND S            | 0.098        | 0.100    |
| 850 MB RH > 50%             | -0.164       | -0.141   |                             |              |          |                          |              |          |
| 700  MB RH > 70%            | -0.090       | -0.088   |                             |              |          |                          |              |          |
| (4                          |              |          |                             |              |          |                          |              |          |
| 6                           |              |          |                             |              |          |                          |              |          |



some of the strongest. Other than the climatological predictors, there are no distinct trends among the meteorological predictor selection.

Of the 12 predictive equations developed for McGuire AFB, nine show superior forecast skill to conditional climatology. The unsuccessful predictive equations produce good forecasts, with slight biases. Overall, the application of the surface-based observing method for McGuire AFB is considered a success. Next, evaluation of the forecast equations for Andrews AFB is examined.

### 4.4 Andrews AFB

4.4.1 Ceiling Less than 200 ft. The graph of MSEs verified on the independent sample of data is shown in Figure 11a. It is evident in all Andrews AFB cases that the MSE for conditional climatology is smaller than that of the surface-based observations system. Although the one and six-hour forecasts are competitive, the other four clearly are not. The main reason for the variability in MSEs is a small sample size. While the Dover AFB and McGuire AFB forecast parameters have approximately 50 observations for verification, Andrews only has approximately 30. There are a couple of reasons for this. First, the number of occurrences of ceiling below 200 ft at Andrews AFB is significantly lower than the other two stations. Dover AFB and McGuire AFB have approximately 400 observations of fog, while Andrews AFB has only about 200. The second reason is the non-reporting of ceilings. As previously mentioned, forecasts are not verified if ceiling data is not available at the forecast hours. This is especially a problem at



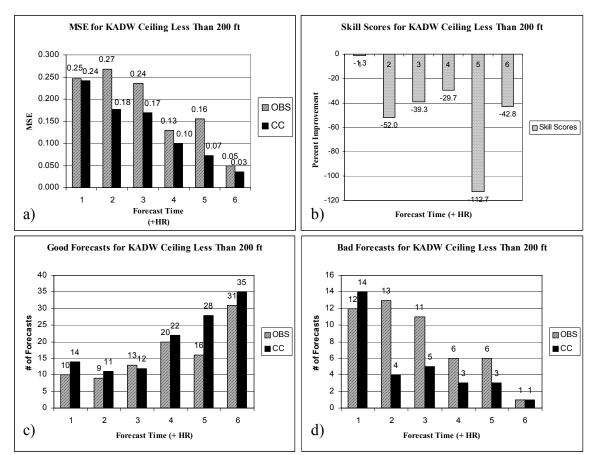


FIG 11. Forecast Statistics for KADW Ceiling Less than 200 ft. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.

Andrews AFB, where the occurrence of reduced visibility often resulted in no sky condition being reported.

A second problem in the Andrews AFB data set is the large amount of missing upper air data. Section 3.2.3 shows that 12% of the upper air data is missing for Andrews AFB, much higher than the other two data sets. This results in fewer upper air predictors being selected for each forecast. A final problem to note in the Andrews AFB data set is the failure to meet the necessary assumptions required for linear regression. Table 10 in Chapter III illustrates that the first three forecast hours exhibit non-normality,



heteroscedasticity, or both. The linear regression model is probably not applicable to this data set and has a strong influence on the excessively high MSEs in the first three hours. The average skill score for the six forecasts is -46% (Fig. 11b). The one-hour forecast is most competitive with conditional climatology, it has a skill score of -1%, but it offers fewer bad forecasts than conditional climatology and almost the same MSE (Fig. 11a & 11d). Aside of the inherent problems with the data, an analysis of the equations produced by the observations-based network (Table 15) provides some insight into why the results from Andrews AFB base differ from Dover AFB and McGuire AFB.

An analysis of the equations reveals significant findings. First, the number of predictors varies from 4-15 throughout the six equations. This is much lower than the previous equations, which typically vary from about 10-25 predictors. The small data set does not adequately detect the dominant atmospheric conditions resulting in dissipation, therefore, the regression is unable to select ample predictors. The smaller number of predictors (which as stated before are mostly binary), unfortunately are not representative enough of the atmosphere surrounding the station. Variations in the atmospheric conditions that could lead to accurate dissipation predictions are therefore not well represented by the model.

Upper air and climatological predictors are also omitted from the equations.

These are often the driving forces in the previous successful forecast models. Uniformity of station selection is also evident in the later forecasts. Successful models typically have a majority of the stations used in the prediction from the southwest and west in the later periods. This model has an omni-directional, or uniform geographic distribution in the



TABLE 15. Forecast Equations for KADW Ceiling Less than 200 ft. The first 3 hours of the forecast (a) and the last three (b).

| Predictor         Estimate (β)         Std Beta           Intercept:         0.466         0.000           KADW SKY (OBSCURED)         0.315         0.315           KDCA VIS < 8000 M         -0.267         -0.185           KNYG CIG HT < 200 FT         0.178         0.167           KMTN WIND DIR (<90)         0.325         0.276 | Predictor Intercept: KNYG VIS < 800 M KRWI SKY (OBSCITRED) | Estimate (β) Std Beta 0.208 0.000 0.284 0.275 | Std Beta | Predictor                   |                             |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|----------|-----------------------------|-----------------------------|----------|
| 0.466 0.000<br>0.315 0.315<br>-0.267 -0.185<br>0.178 0.167<br>0.325 0.276                                                                                                                                                                                                                                                                 |                                                            | 0.208                                         |          |                             | Estimate $(\beta)$ Std Beta | Std Beta |
| 3D) 0.315 0.315<br>-0.267 -0.185<br>0.178 0.167<br>0.325 0.276                                                                                                                                                                                                                                                                            |                                                            | 0.284                                         | 0.000    | 0.000 Intercept:            | 0.120                       | 0.000    |
| -0.267 -0.185<br>0.178 0.167<br>0.325 0.276                                                                                                                                                                                                                                                                                               |                                                            | 7310                                          | 0.275    | KDCA SKY (OBSCURED)         | 0.337                       | 0.190    |
| 0.178 0.167                                                                                                                                                                                                                                                                                                                               |                                                            | 0.1.0                                         | 0.132    | KNYG WIND DIR (<45)         | 0.117                       | 0.084    |
| 0.325 0.276                                                                                                                                                                                                                                                                                                                               | KMTN WIND DIR (<90)                                        | 0.204                                         | 0.173    | KBWI SKY (OVC)              | -0.165                      | -0.178   |
|                                                                                                                                                                                                                                                                                                                                           | KEZF WIND DIR (<90)                                        | 0.289                                         | 0.170    | KMTN WIND DIR (<90)         | 0.158                       | 0.161    |
|                                                                                                                                                                                                                                                                                                                                           | KOKV CIG HT <12000 FT                                      | 0.522                                         | 0.337    | KCJR SKY (FEW/SCT)          | 0.373                       | 0.230    |
|                                                                                                                                                                                                                                                                                                                                           | KOKV WIND DIR (<135)                                       | 0.202                                         | 0.165    | KCJR CIG HT <200 FT         | -0.166                      | -0.109   |
|                                                                                                                                                                                                                                                                                                                                           | KMRB WIND DIR (<235)                                       | -0.275                                        | -0.127   | KCJR VIS $< 1600 \text{ M}$ | 0.337                       | 0.273    |
|                                                                                                                                                                                                                                                                                                                                           | KNHK SKY (BKN)                                             | -0.234                                        | -0.164   | KOKV CIG HT <12000 FT       | 0.274                       | 0.195    |
|                                                                                                                                                                                                                                                                                                                                           | KLNS WIND DIR (<90)                                        | 0.162                                         | 0.191    | KOKV WIND DIR (<135)        | 0.226                       | 0.205    |
|                                                                                                                                                                                                                                                                                                                                           |                                                            |                                               |          | KNHK CIG HT <1000 FT        | 0.422                       | 0.230    |
| (a)                                                                                                                                                                                                                                                                                                                                       |                                                            |                                               |          | KGED VIS $< 4800 \text{ M}$ | 0.191                       | 0.190    |

| Predictor Estimate (β)         |          | VIII C. I                |                       |          | I+6 HK                      | ~                     |          |
|--------------------------------|----------|--------------------------|-----------------------|----------|-----------------------------|-----------------------|----------|
| •                              | Std Beta | Predictor                | Estimate (β) Std Beta | Std Beta | Predictor                   | Estimate (β) Std Beta | Std Beta |
|                                | 0.000    | Intercept:               | -0.325                | 0.000    | Intercept:                  | -0.146                | 0.000    |
| KDCA SKY (OBSCURED) 0.310      | 0.187    | KADW WIND DIR (<45)      | 0.177                 | 0.112    | KDCA SKY (OVC)              | -0.111                | -0.148   |
|                                | 0.127    | KDCA SKY (OBSCURED)      | 0.341                 | 0.201    | KNYG CIG HT <200 FT         | 0.098                 | 0.125    |
| KMTN WIND DIR (<90) 0.126      | 0.122    | KNYG CIG HT <200 FT      | 0.150                 | 0.169    | KBWI SKY (FEW/SCT)          | 0.254                 | 0.167    |
| KCJR SKY (FEW/SCT) 0.582       | 0.351    | KHGR CIG HT <12000 FT    | 0.342                 | 0.163    | KBWI SKY (OBSCURED)         | 0.103                 | 0.147    |
|                                | 0.099    | KCJR SKY (FEW/SCT)       | 0.203                 | 0.144    | KEZF SKY (OBSCURED)         | 0.276                 | 0.131    |
| KOKV PRECIP 0.431              | 0.182    | KCJR CIG HT <500 FT      | 0.085                 | 0.115    | KNHK SKY (OBSCURED)         | 0.121                 | 0.148    |
| KOKV WIND DIR (<135) 0.166     | 0.152    | KNHK SKY (OBSCURED)      | 0.116                 | 0.127    | KGED VIS < 4800 M           | 0.072                 | 0.099    |
| KDOV WIND SPEED 0.013          | 0.106    | KSBY SKY (OVC)           | 0.083                 | 0.1111   | KWAL VIS $< 1600 \text{ M}$ | 0.093                 | 0.1111   |
| KLNS WIND DIR (<135) 0.122     | 0.117    | KCHO CIG HT <500 FT      | 0.139                 | 0.178    | KPNE WIND DIR (<45)         | 0.161                 | 0.209    |
| KGED VIS < 4800 M 0.112        | 0.107    | KCHO DEWPOINT DEPRESSION | 0.059                 | 0.185    | KPNE WIND SPEED             | 0.018                 | 0.220    |
| KPTB SKY (OBSCURED) 0.240      | 0.033    | KPNE WIND DIR (<45)      | 0.089                 | 0.1111   | KWWD VIS $< 1600 \text{ M}$ | 0.112                 | 0.124    |
| KCHO CIG HT <500 FT 0.126      | 0.120    | KPNE WIND SPEED          | 0.018                 | 0.199    | KLFI CIG HT <12000 FT       | 0.106                 | 0.092    |
| KCHO DEWPOINT DEPRESSION 0.065 | 0.177    | KWWD WIND DIR (<90)      | 0.180                 | 0.218    | KTTN VIS < 9999 M           | 0.135                 | 0.086    |
| CPNE PRECIP -0.253             | -0.219   | SFC WIND N               | 0.125                 | 0.160    | KBLM CIG HT <1000 FT        | 0.171                 | 0.182    |
| KPNE WIND SPEED 0.023          | 0.226    |                          |                       |          | 1000 MB WIND N              | 0.151                 | 0.184    |

later forecast hours, which is also troublesome in the Dover AFB and McGuire AFB cases where it appears. The predictors selected by the model do not appear ambiguous. That is, the model focuses mainly on sky conditions and ceiling predictors and veers away from the visibility predictors. Overall, it is believed that with a larger, normally distributed sample and some fine tuning this model could be made to accurately represent the forecast conditions. Examined next is the visibility forecast for Andrews AFB.

4.4.2 Visibility Less than 0.5 mi. The MSE (Fig. 12a) for the one-hour forecast is superior in the observations-based system; however, it is the only case that illustrates the superiority of this methodology. The MSEs are significantly better for conditional climatology for the other five forecast hours. This is also evident in the skill scores (Fig. 12b) where the average decrease in skill score of the observations-based network is 45%. The other forecast statistics (Fig 12c, 12d) significantly favor conditional climatology, with the observations network competitive on only a few occasions.

Once again, it is believed that the largest problem for the Andrews AFB visibility forecasts is the data itself. The number of occurrences is about one third the number of occurrences for both Dover AFB and McGuire AFB. Also note from Chapter III (Table 7) that the first four forecast hours exhibit errors that are not normally distributed. This violates the assumptions required for linear regression. This is the main reason for the inadequacies in the Andrews AFB forecast.

Examining the equations (Table 16) provides further insight on the problems with the visibility forecast. The best forecast time, at one hour, has relatively few predictors, but is geographically uniform around the station. The model remains consistent in its



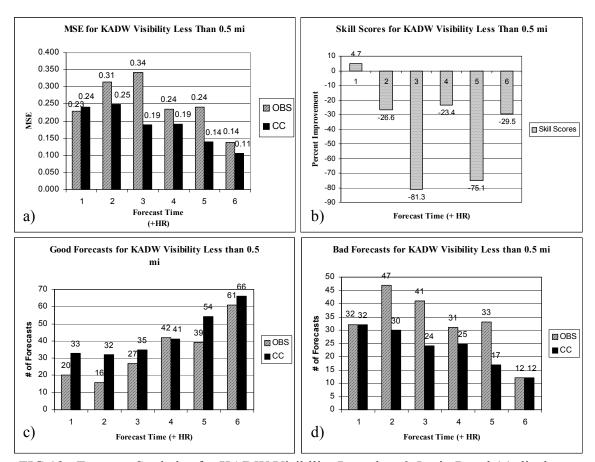


FIG 12. Forecast Statistics for KADW Visibility Less than 0.5 mi. Panel (a) displays MSE, panel (b) shows skill scores, panel (c) good forecasts, and panel (d) shows bad forecasts for each hour.

selection of parameters throughout the six hours, and also appears to hone in on the meteorological processes that lead to dissipation. For example, at least one moisture parameter is present in all six forecasts (bold in Table 16) and the standard beta values show that they are one of the most influential factors predicting dissipation. Another noticeable trend is the strong presence of northeasterly to southeasterly winds, which would intuitively indicate moisture advection from the Atlantic Ocean. In the first hour's forecast, the easterly wind term indicates dissipation, while the other five forecasts



TABLE 16. Forecast Equations for KADW Visibility Less than 0.5 mi. The first 3 hours of the forecast (a) and last three (b).

| T+1 HR                        |              |                  | T+2 HR                   |                       |          | T+3 HR                 |                       |          |
|-------------------------------|--------------|------------------|--------------------------|-----------------------|----------|------------------------|-----------------------|----------|
| Predictor                     | Estimate (β) | Std Beta         | Predictor                | Estimate (β) Std Beta | Std Beta | Predictor              | Estimate (β) Std Beta | Std Beta |
| Intercept:                    | 0.652        | 0.000 Intercept: | itercept:                | 0.340                 | 0.000    | 0.000 Intercept:       | 0.250                 | 0.000    |
| KNYG WIND DIR (<45)           | 0.160        | 0.162 K          | KNYG WIND DIR (<45)      | 0.139                 | 0.136    | KDAA SKY (OVC)         | -0.135                | -0.142   |
| KBWI DEWPOINT DEPRESSION      | -0.085       | -0.160 K         | KMTN WIND DIR (<90)      | 0.143                 | 0.118    | KDAA CIG HT <1000 FT   | 0.254                 | 0.218    |
| KMTN SKY (SKC)                | -0.477       | -0.116 K         | KEZF CIG HT <200 FT      | 0.179                 | 0.150    | KHEF VIS $\geq$ 9999 M | -0.095                | -0.081   |
| KHGR VIS $\Rightarrow$ 9999 M | -0.145       | -0.108 K         | KHGR WIND DIR (<135)     | 0.260                 | 0.153    | KNYG CIG HT <500 FT    | -0.181                | -0.184   |
| SFC WIND SW                   | -0.343       |                  | KNHK WIND DIR (<135)     | -0.416                | -0.232   | KNYG VIS >= 9999 M     | -0.177                | -0.121   |
|                               |              | X                | KNHK DEWPOINT DEPRESSION | -0.052                | -0.141   | KNYG WIND DIR (<45)    | 0.074                 | 0.075    |
|                               |              | X                | KLNS WIND DIR (<90)      | 0.149                 | 0.140    | KMTN WIND DIR (<90)    | 0.100                 | 0.084    |
|                               |              | 1                | 000 MB WIND SW           | -0.314                | -0.104   | KNHK VIS < 800 M       | 0.146                 | 0.140    |
|                               |              | 72               | 700 MB WIND NW           | -0.245                | -0.130   | KNHK WIND DIR (<135)   | -0.300                | -0.171   |
|                               |              |                  |                          |                       |          | KLNS CIG HT <500 FT    | 0.090                 | 0.093    |
|                               |              |                  |                          |                       |          | KLNS WIND DIR (<90)    | 0.170                 | 0.165    |
| a)                            |              |                  |                          |                       |          | KCXY WIND DIR (<90)    | 0.121                 | 0.114    |
|                               |              |                  |                          |                       |          | KWAL VIS < 800 M       | 0.194                 | 0.164    |
|                               |              |                  |                          |                       |          | 1000 MB RH $> 30\%$    | -0 204                | 960 0-   |

| T+4 HR                        |                    |          | T+5 HR                      | R                  |          | T+6 HR                     | IR           |          |
|-------------------------------|--------------------|----------|-----------------------------|--------------------|----------|----------------------------|--------------|----------|
| Predictor                     | Estimate $(\beta)$ | Std Beta | Predictor                   | Estimate $(\beta)$ | Std Beta | Predictor                  | Estimate (β) | Std Beta |
| Intercept:                    | 0.407              | 0.000    | Intercept:                  | 0.573              | 0.000    | Intercept:                 | -5.842       | 0.000    |
| KNYG WIND DIR (<45)           | 0.107              | 0.117    | KADW DEWPOINT               | -0.022             | -0.310   | KNYG CIG HT <200 FT        | 0.228        | 0.166    |
| KIAD CIG HT <200 FT           | -0.194             | -0.150   | KNYG CIG HT <200 FT         | 0.173              | 0.114    | KBWI VIS < 4800 M          | 0.169        | 0.204    |
| KCJR SKY (FEW/SCT)            | 0.261              | 0.133    | KNYG WIND DIR (<45)         | 0.064              | 0.075    | KHGR WIND DIR (<360)       | 0.158        | 0.148    |
| KRIC WIND DIR (<135)          | 0.164              | 0.137    | KBWI VIS < 4800 M           | 0.129              | 0.140    | KOKV SKY (FEW/SCT)         | 0.136        | 0.091    |
| KLNS DEWPOINT                 | -0.013             | -0.178   | KMTN SKY (OVC)              | 0.106              | 0.128    | KNHK VIS < 800 M           | 0.079        | 0.098    |
| KGED CIG HT <500 FT           | 0.067              | 0.073    | KMTN CIG HT <1000 FT        | -0.148             | -0.140   | KLNS WIND DIR (<90)        | 0.086        | 0.107    |
| KILG DEWPOINT DEPRESSION      | -0.037             | -0.169   | KHGR WIND DIR (<360)        | 0.165              | 0.141    | KCXY SLP                   | 0.185        | 0.112    |
| KSBY VIS < 800 M              | 0.274              | 0.261    | KMRB VIS $>= 9999 M$        | -0.112             | -0.091   | KGED VIS < 8000 M          | -0.085       | -0.076   |
| KRDG WIND DIR (<90)           | 0.145              | 0.122    | KTHV WIND DIR (<90)         | 0.097              | 0.093    | KSBY SKY (OVC)             | 0.079        | 0.107    |
| KPNE VIS $\Rightarrow$ 9999 M | -0.091             | -0.093   | KNHK SKY (OBSCURED)         | 0.160              | 0.162    | KSBY VIS $< 800 \text{ M}$ | 0.200        | 0.228    |
| KPNE WIND SPEED               | 0.009              | 0.087    | KDOV SKY (OBSCURED)         | -0.119             | -0.133   | KWAL CIG HT <200 FT        | 0.101        | 0.092    |
| CLIMO < 1000/1#5              | -0.024             | -0.148   | KSBY VIS $< 800 \text{ M}$  | 0.296              | 0.305    | KPHL WIND SPEED            | -0.015       | -0.166   |
| STATIC STABILITY (925-850MB)  | 14.577             | 0.137    | KWAL VIS $< 1600 \text{ M}$ | 0.174              | 0.127    | KWWD WIND DIR (<90)        | 0.077        | 0.094    |
|                               |                    |          | KCHO WIND DIR (<135)        | 0.220              | 0.124    | KMIV SKY (OVC)             | 0.057        | 0.074    |
|                               |                    |          | KWWD WIND DIR (<90)         | 0.200              | 0.220    | KMIV WIND SPEED            | 0.020        | 0.203    |
|                               |                    |          | KWWD DEWPOINT               | 0.007              | 0.140    | KLFI SKY (SKC)             | 0.115        | 0.082    |
|                               |                    |          | KLFI WIND SPEED             | -0.020             | -0.199   | KLFI WIND DIR (<135)       | 0.079        | 0.078    |
| (1                            |                    |          | CLIMO < 1000/1#5            | -0.029             | -0.189   | KEWR CIG HT <1000 FT       | 0.113        | 0.138    |
| 0)                            |                    |          | 850 MB RH > 30%             | 0.233              | 0.166    | SIN DAY                    | -0.050       | 960.0-   |
|                               |                    |          |                             |                    |          | 1000  MB RH > 90%          | 0.139        | 0.188    |
|                               |                    |          |                             |                    |          | 850 MB RH $> 30\%$         | 0.302        | 0.237    |

remain consistent in indicating the presence of reduced visibility with these wind conditions. This discrepancy is left unexplained in the statistical analysis.

The later forecast hours again show neither climatological predictors, nor a dependence on westerly or southwesterly stations for predictors. These could be two contributing factors to the lack of skill shown later in the period.

Although the Andrews AFB forecasts overall fail to verify well on independent data, there are positive trends, such as the lack of erroneous predictor selection indicating that success could be achieved in the future. The small number of predictors, due to the smaller data set, has a large influence on the negative skill scores of the model. However, the most significant problem in the models is the failure of the data set to meet the assumptions required for linear regression. Underlying problems throughout the models are examined next.

4.5 Underlying Model Problems. There are inherent problems that persist through all the models that are addressed. The first is the linearity of the model. In linear regression, an R<sup>2</sup> value is calculated, this is the coefficient of determination and represents the adequacy of fit of the regression model, or the variability in the data accounted for by the model (Montgomery and Runger 2001). The R<sup>2</sup> values range from 0 to 1 with 1 being a perfect fit. The R<sup>2</sup> values for the forecast models presented in this work typically are between 0.25 and 0.6. Although these values may seem low, they are not of major concern for the following reasons. First, R<sup>2</sup> values can be erroneously inflated by adding an excessive amount of terms (Montgomery and Runger 2001). This study keeps with the strict F-test criteria to minimize the number of predictors added to the equation. Second, this is a



linear model of the atmosphere, an entity that usually behaves non-linearly, making high R<sup>2</sup> values difficult to obtain. Third, according to Montgomery and Runger (2003) large R<sup>2</sup> values do not necessarily imply accurate predictions of future events. Finally, as Wilks (1995) points out the goal of the statistical methodology is to produce an accurate forecast, not a perfect model. Therefore, this work focuses on developing accurate dissipation forecasts, regardless of the model's linear relationship to the data set.

A second issue is the absence of sky conditions in observations. Although replacement data are used to fill in the missing values, sky condition is never used as a predictand value. This reduces the sample size considerably for both equation development and verification, especially in the Andrews AFB data set.

Third, this system is designed independent of time of day so that one forecast equation could suffice for the airfield. This varies from Vislocky and Fritsch's (1997) work that focused on two short time intervals for their forecasts. Breaking the data into intervals (2-4 hours) would be more representative of diurnal differences in weather patterns and could produce improved equations for fog dissipation. Furthermore, it eliminates some of the advantages conditional climatology has. That is, as fog is primarily a nocturnal/early morning event conditional climatology has an advantage in the afternoon cases in that probabilities decrease to zero much faster, typically mirroring the observations. Many of the over forecasting occurrences occur in late morning or afternoon situations, where the observations-based network is working regardless of time. While the observations network is based on the physical mechanisms that lift the fog, different processes are at work in the overnight versus daylight hours. Breaking into time



blocks could allow the equations to pick different predictors, e.g. different physical mechanisms for afternoon versus nocturnal events.

A final remark is the impact automated observing systems employed by the NWS had on this study. Vislocky and Fritsch's (1997) original work used abundant full time manual reporting stations along the east coast, many of which no longer exist. The disadvantage of the ASOS observations is missing data due to staggered implementation and spin-up times. These two factors cause many of the observations from ASOS stations to be strongly influenced by missing data techniques. Examples of the how this technique is applied to real world events follow.

4.6 Applications of the Observations-Based Method. To implement this method operationally, each equation is calculated to produce a probability forecast. Forecast probabilities range from '1' representing a 100% chance of occurrence of the event (e.g. ceiling below 200 ft). to '0' representing a 0% chance of the event occurring.

Table 17 provides an application of this process to produce a prediction forecast for 1-hour in the future at Dover AFB. The first column represents the predictor labels (the physical meaning of the response variable) with the regression coefficients ( $\beta$ ) in the second column. The third column is the actual or observed value of the predictor (x). Notice that a majority of the predictors are binary values, coded as either a '0' for non-occurrence or a '1' for occurrence. The values are multiplied, and then summed, per Eq. 2 (including the intercept,  $\beta_0$ ) to produce the forecast of 76.9% probability of occurrence. Probabilities are calculated for each of the six hourly forecasts for each of the two network versus conditional climatology on actual observed events. The first event took



Table 17. Example Predictive Equation.

|                        | Estimate  | Observed |                 |
|------------------------|-----------|----------|-----------------|
| Predictor              | (β)       | Value    | Equation Result |
|                        |           |          |                 |
| Intercept:             | 0.6999357 |          | 0.6999357       |
| 700 MB T               | -0.018243 | 4.6      | -0.0839178      |
| KWWD CIG HT <3000 FT   | -0.4099   | 0        | 0               |
| KWWD VIS $\geq$ 9999 M | -0.11243  | 0        | 0               |
| KSBY VIS >= 9999 M     | -0.120956 | 0        | 0               |
| KILG VIS >= 9999 M     | -0.11369  | 0        | 0               |
| KILG WIND DIR (<235)   | -0.494969 | 0        | 0               |
| KMIV WIND DIR (<90)    | 0.2029688 | 0        | 0               |
| KGED CIG HT <3000 FT   | -0.382974 | 0        | 0               |
| KDOV SKY (OBSCURED)    | 0.1530178 | 1        | 0.1530178       |
| KDOV VIS < 4800 M      | -0.139053 | 0        | 0               |
|                        |           |          |                 |
| Forecast Probability:  | 0.7690357 |          |                 |

place on 24 Jan 01 at 0627Z at Dover AFB and the forecast is for ceiling below 200 ft. Figure 13 illustrates the two probability forecasts for the six valid times along with the actual observed event. Notice at the one-hour point, the observations-based network produces a forecast of over 80% probability of occurrence, while conditional climatology has probabilities in the 60-65% range. As the low ceiling lifts, slightly after 0800Z, the two-hour observations-based forecast accurately detects dissipation, generating a probability forecast of 17% compared to 33% for conditional climatology. The observations forecast remains in sync with the actual observation at the three-hour point. The four-hour point shows both methods producing forecast probabilities of 25%, still within the good forecast range. Finally, the observations-based network accurately forecasts the last two hours, while conditional climatology lags behind in its prediction.

The second example (Fig. 14) is from 26 Oct 00, 0500Z at McGuire AFB, with visibility less than 0.5 mi as the forecasted predictand. This situation persists for over six



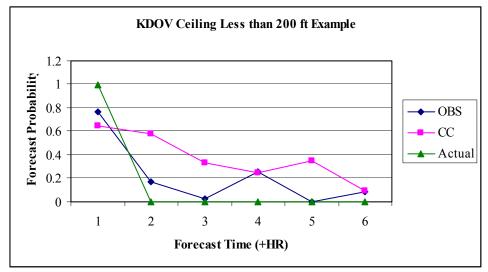


FIG. 13. Forecast Comparison for Dover AFB. Each forecast method is plotted for a six hour forecast beginning at 0627Z, 24 Jan 01 at Dover AFB. Note that the observations-based network predicts dissipation faster and more accurately than conditional climatology.

hours and is forecasted more accurately by the observations-based network. The one-hour forecast is accurate for both forecast techniques, with a 92% probability for the observations-based network and an 81% probability for conditional climatology. The second hour illustrates the strength of the observations-based forecast, where conditional climatology almost always decreases probabilities with time; the observations network adjusts and produces a more accurate forecast based solely on the current conditions. Thus the two-hour forecast is actually more accurate than the one-hour forecast and significantly better than conditional climatology. Although the probabilities decrease as time goes on, the observations-based method continues to produce a superior forecast. As far as five hours out, this method is still forecasting a 64% probability of occurrence, which may be below the good forecast criteria, but is still a solid forecast for five hours in



the future based solely on the current conditions and is significantly better than conditional climatology.

Overall these two examples illustrate the effectiveness of an observations-based system to accurately forecast timing of dissipation, as well as event duration.

Conclusions arising from this research along with recommendations on implementation and future work follow.

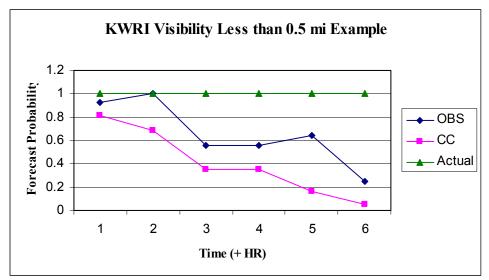


FIG. 14. Forecast Comparison for McGuire AFB. Each forecast method is plotted for a six hour forecast beginning at 0500Z, 26 Oct 00 at McGuire AFB. Note that the observations-based network more accurately predicts the continued presence of the low ceiling through the duration of the event.

#### V. Conclusions and Recommendations

#### 5.1 Conclusions

The goal of this research is to develop a forecast tool for the 15 OWS to predict dissipation of fog more accurately than their current methodology, conditional climatology. To accomplish this, 36 probabilistic forecast equations are developed, 12 for each of the three main airfields along the east coast, Dover AFB, McGuire AFB, and Andrews AFB. Short-term forecast equations are developed at hourly intervals from 0-6 hours beyond the initial time for each of two predictors, ceiling less than 200 ft and visibility less than 0.5 mi.

The overall results of this research are mixed. Of the 36 predictive equations, 16 perform better statistically than conditional climatology when compared against an independent sample of data. Of the forecasts that are better, a 17.6% average improvement is made over conditional climatology. Some of the improved forecasts are the ceiling less than 200 ft criteria at both Dover AFB and McGuire AFB where all 6 hourly forecasts had positive skill scores. Also notable are the McGuire AFB visibility forecasts, which show a positive average skill score. The two most successful forecasts, for ceilings less than 200 ft at Dover AFB and McGuire AFB both show large increases in skill score, a high number of good forecasts, and few bad forecasts.



In the cases where the observations-based network is superior, the predictive equations have similar characteristics. First, is geographic influence. The early forecasts have little dependence on the geographic location of the network station selected. As the forecast lead time increases dependence on predictors from the southwest especially dominate the equations. Second, many of the successful longer term forecasts (5 or 6-hours) contain climatological parameters. A strong dependence on wind predictors, both at the surface and upper levels is evident throughout the equations.

With these similarities examined, it is noted that each of these forecasts is independently produced and validated for each station at each hour. Although there appear to be trends, switching a predictor from one model to another will not produce a more accurate forecast. Just because one predictor works at McGuire AFB does not mean it will be effective at Dover AFB.

The most disappointing conclusions of this study are the Andrews AFB forecasts, which show large negative skill scores. A majority of the forecast times for Andrews AFB fail the tests of normality and/or heteroscidacity required to meet the assumptions necessary to employ linear regression, indicating that a linear model is not the best representation of this data set. Problems contributing to this include the Andrews AFB data set being smaller than the others, especially in the verification data set where missing observations dominate. As a result, the Andrews AFB data set is unable to account for variability in surface observations (in fog cases), which prevents the production of an accurate forecast. More research, with a larger, more complete data set may correct these forecasts for operational implementation.



Despite forecast scores below conditional climatology, the negative forecasts do show some advantages. First, the number of forecasts with absolute error less than 30 percent (e.g. good forecasts) often exceeds the number of good forecasts produced by conditional climatology. Second, the MSEs in these cases are typically, with a few exceptions, low and very competitive with the climatology forecasts. Many of the errors and decreased forecasting skill from the poor forecasts in the observations-based network are similar and shown to have bias. The most common bias among the forecasts is an overestimate of event occurrence when the fog has already dissipated. In the later forecast hours of the forecast this is especially significant and results in the higher degradation of skill scores.

A final success noted is the overall application of the methodology to new "extreme" predictand values, representing the worst cases of fog. The lowest values studied before now were 500 ft ceilings and 1 mi visibility (Vislocky and Fritsch 1997). This is encouraging as this allows the method to have significant impact on operations in the most marginal weather conditions. Recommendations for implementation of this technique by the 15 OWS and possible future research to improve the shortfalls follow.

# 5.2 Recommendations for the 15 OWS

It is recommended that the 15 OWS implement this program for the following cases: KDOV ceiling less than 200 ft, KWRI ceiling less than 200 ft, and KWRI visibility less than 0.5 mi. For both of the ceiling forecasts, all six hourly forecasts show significant improvement over conditional climatology and are the superior forecast



model. The six hourly visibility forecasts for KWRI only have three hours that are consistently better than conditional climatology; however, it has two advantages. First, the earlier hours consistently produce the better forecasts; only the first hour had a negative skill score. Second, the first hour had a distinct advantage in producing good forecasts--forecasts with an absolute error of less than 30%. Therefore, this model can be used successfully in an operational environment.

Implementation of the other three models could be used on a trial basis. Although the verification results are not optimal, the technique has some merit in these cases based on both previous work and this current research. Implementation of these methods on a trial basis could produce better results than in the confined scope of this research. Realizing the shortfalls of each particular model is crucial for successful implementation. For example, the Dover AFB visibility forecasts, which all have negative skill scores do a solid job of forecasting occurrences in the short-term, however, the oveforecasting tendency is tied to the reliance on southwesterly winds to advect the fog from the area. Analysis of the presence or absence of these conditions could lead the forecaster to an accurate dissipation forecast. Using these models on any type of basis could provide valuable information on the ability of the model to produce successful forecasts.

# 5.3 Recommendations for Future Research

The observations-based method is successful for many areas, including the area currently researched for the 15 OWS. This researcher believes that with some tweaking



of the system, this methodology could be applied across the AF. There are factors that must be accounted for in future research to make this work operationally.

First, forecasts should be broken up temporally. Forecast increments of 2-4 hours should be looked at individually in order to focus on the exact physical mechanisms that dissipate the fog. This allows diurnal cycles to be taken into account, capitalizing on the advantages conditional climatology offers. Distinct time periods would be more representative of different observed parameters predicting dissipation.

Vislocky and Fritsch (1997) suggest inclusion of satellite imagery into the system. This is a key element to determine spatially how large the extent of the fog area is.

Although the statistical method is cut and dry, the input of both the spatial extent of the fog coverage, as well as how close the airfield of interest is to the outer edges of the fog (as suggested by Gurka 1978) would add considerable predictive ability to the model.

Additionally, further research is necessary to apply this technique throughout the remainder of the 15 OWS AOR. The original intent of the research was to apply this methodology to all 11 airfields throughout the 15 OWS. With some modification to the methodology, this could be a successful application for any site within the AOR. It is envisioned that this methodology, with a significant amount of additional work, could be applied to airfields throughout the AF as an effective alternative to conditional climatology.

This study's observations-based methodology could benefit significantly from the inclusion of mesonet data in regions where available. States such as Oklahoma and Colorado currently have mesonets. This spatially denser observing platform could



provide more insight, data, and information on the dissipation process and as a result produce more accurate forecasts.

Lastly, another process that could produce accurate forecast equations is the use of a logistic regression model as opposed to the linear model. The advantage of the logistic model is that it always produces a value between 0 and 1 and is able to reduce forecast error (Hilliker and Fritsch 1999). A comparison between linear and logistical regressions could demonstrate the advantages of the logistical regression and further improve forecasts.



# **Appendix: Surface Observing Networks**

This appendix outlines the 40 surface observing stations used to produce the dissipation forecasts for the three airfields. The 10, 19, 25, 30, 35, and 40 station networks used to produce the 1-6 hour forecasts are listed.



## **Dover AFB**

TABLE A1. Surface Network Observing Stations for Dover AFB.

| Observing Station                        | ICAO          | LAT      | LON       | Elevation (m) |
|------------------------------------------|---------------|----------|-----------|---------------|
|                                          | 10 Station Ne | etwork   |           |               |
| Dover AFB (DE)                           | KDOV          | 39 08    | 75 28     | 9             |
| Georgetown Suffox County (DE)            | KGED          | 38 41 24 | 75 21 45  | 15            |
| Wilmington (DE)                          | KILG          | 39 40 22 | 75 36 03  | 24            |
| Wildwood (NJ)                            | KWWD          | 39 01    | 74 55     | 7             |
| Millville (NJ)                           | KMIV          | 39 21 58 | 75 04 42  | 26            |
| Philadelphia (PA)                        | KPHL          | 39 52 06 | 75 14 37  | 6             |
| Philadelphia NE Airport (PA)             | KPNE          | 40 04 44 | 75 00 49  | 36            |
| Salsbury (MD)                            | KSBY          | 38 20 21 | 75 30 15  | 15            |
| Atlantic City (NJ)                       | KACY          | 39 27 53 | 074 35 12 | 23            |
| Baltimore, Washington International (MD) | KBWI          | 39 10 00 | 076 41 00 | 44            |
|                                          | 19 Station Ne | etwork   |           |               |
| Baltimore, Martin (MD)                   | KMTN          | 39 20    | 076 25    | 7             |
| Mount Holley (NJ)                        | KVAY          | 39 56 26 | 074 50 28 | 16            |
| Patuxent River NAS (MD)                  | KNHK          | 38 16 43 | 076 24 50 | 12            |
| Andrews AFB (MD)                         | KADW          | 38 49    | 076 51    | 86            |
| Wallops Island (VA)                      | KWAL          | 37 56 26 | 075 27 47 | 12            |
| McGuire AFB (NJ)                         | KWRI          | 40 01    | 074 36    | 41            |
| Trenton, Mercer County Airport (NJ)      | KTTN          | 40 16 35 | 074 48 59 | 64            |
| Reading Regional Airport (PA)            | KRDG          | 40 22 24 | 075 57 34 | 105           |
| Lancaster Airport (PA)                   | KLNS          | 40 07 13 | 076 17 40 | 123           |
|                                          | 25 Station Ne | etwork   |           |               |
| Allentown (PA)                           | KABE          | 40 39 03 | 075 26 57 | 120           |
| Fort Belvoir (VA)                        | KDAA          | 38 43    | 077 11    | 21            |
| Washington, Reagan National (VA)         | KDCA          | 38 50 54 | 077 02 03 | 4             |
| Harrisburg, Capitol City Airport (PA)    | KCXY          | 40 13 13 | 076 51 14 | 105           |
| Harrisburg International Airport (PA)    | KMDT          | 40 11 46 | 076 46 23 | 94            |
| York Airport (PA)                        | KTHV          | 39 55 22 | 076 52 41 | 146           |
|                                          | 30 Station Ne | etwork   |           |               |
| Belmar-Farmsdale (NJ)                    | KBLM          | 40 11    | 074 08    | 48            |
| Melfa/Accomack Airport (VA)              | KMFV          | 37 39    | 075 46    | 15            |
| Quantico, MCAF (VA)                      | KNYG          | 38 30 45 | 077 17 30 | 3             |
| Washington-Dullus (VA)                   | KIAD          | 38 56 05 | 077 26 51 | 95            |
| Shannon Airport (VA)                     | KEZF          | 38 16    | 077 27    | 26            |
|                                          | 35 Station Ne | etwork   |           |               |
| Culpeper County Airport (VA)             | KCJR          | 38 31 36 | 077 51 32 | 95            |
| Newerk International Airport (NJ)        | KEWR          | 40 40 57 | 074 10 10 | 5             |
| Caldwell, Exxex County Airport (NJ)      | KCDW          | 40 52 35 | 074 16 59 | 52            |
| Charlottesville-Abermarle Airport (VA)   | КСНО          | 30 08 18 | 078 27 21 | 195           |
| Richmond International Airport (VA)      | KRIC          | 37 30 40 | 077 19 24 | 51            |
|                                          | 40 Station Ne | etwork   |           |               |
| Farmingdale Republic Airport (NY)        | KFRG          | 40 44 03 | 073 25 01 | 24            |
| New York City, JFK (NY)                  | KJFK          | 40 38 19 | 073 45 44 | 3             |
| Langly AFB (VA)                          | KLFI          | 37 05    | 076 21    | 6             |
| New York, LaGuardia (NY)                 | KLGA          | 40 46 45 | 073 52 48 | 6             |
| Petersburg (VA)                          | KPTB          | 37 11    | 077 31    | 59            |



## **McGuire AFB**

TABLE A2. Surface Network Observing Stations for McGuire AFB.

| Observing Station                          | ICAO          | LAT      | LON       | Elevation (m) |
|--------------------------------------------|---------------|----------|-----------|---------------|
|                                            | 10 Station No | etwork   |           |               |
| McGuire AFB (NJ)                           | KWRI          | 40 01    | 074 36    | 41            |
| Mount Holley (NJ)                          | KVAY          | 39 56 26 | 074 50 28 | 16            |
| Belmar-Farmsdale (NJ)                      | KBLM          | 40 11    | 074 08    | 48            |
| Trenton, Mercer County Airport (NJ)        | KTTN          | 40 16 35 | 074 48 59 | 64            |
| Philadelphia International Airport (PA)    | KPHL          | 39 52 06 | 075 13 52 | 6             |
| Philadelphia, NE Philadelphia Airport (PA) | KPNE          | 40 04 44 | 075 00 49 | 36            |
| Atlantic City (NJ)                         | KACY          | 39 27 53 | 074 35 12 | 23            |
| Millville Municipal Airport (NJ)           | KMIV          | 39 21 58 | 075 04 42 | 26            |
| Wilmington (DE)                            | KILG          | 39 40 22 | 075 36 03 | 24            |
| Allentown (PA)                             | KABE          | 40 39 03 | 075 26 57 | 120           |
|                                            | 19 Station No | etwork   |           |               |
| Newerk International Airport (NJ)          | KEWR          | 40 40 57 | 074 10 10 | 5             |
| Caldwell, Exxex County Airport (NJ)        | KCDW          | 40 52 35 | 074 16 59 | 52            |
| New York City, JFK (NY)                    | KJFK          | 40 38 19 | 073 45 44 | 3             |
| New York, LaGuardia (NY)                   | KLGA          | 40 46 45 | 073 52 48 | 6             |
| Wildwood ASOS (NJ)                         | KWWD          | 39 01    | 074 55    | 2             |
| Teterboro Airport (NJ)                     | KTEB          | 40 51 32 | 074 03 24 | 2             |
| Islip, Long Island (NY)                    | KISP          | 40 47 38 | 073 06 06 | 30            |
| Farmingdale Republic Airport (NY)          | KFRG          | 40 44 03 | 073 25 01 | 24            |
| Dover AFB (DE)                             | KDOV          | 39 08    | 075 28    | 9             |
|                                            | 25 Station No | etwork   |           |               |
| Reading Regional Airport (PA)              | KRDG          | 40 22 24 | 075 57 34 | 105           |
| Lancaster Airport (PA)                     | KLNS          | 40 07 13 | 076 17 40 | 123           |
| Georgetown, Suxxex County Airport (DE)     | KGED          | 38 41 24 | 075 21 45 | 15            |
| Montgomery, Orange County Airport (NY)     | KMGJ          | 41 30 33 | 074 15 54 | 111           |
| Newburgh/Stewart (NY)                      | KSWF          | 41 30    | 074 06    | 150           |
| Wilkes-Barre-Scranton International (PA)   | KAVP          | 41 20 20 | 075 43 36 | 293           |
|                                            | 30 Station No | etwork   |           |               |
| Bridgeport (CT)                            | KBDR          | 41 09 30 | 073 07 44 | 3             |
| Danbury Municipal Airport (CT)             | KDXR          | 41 22 18 | 073 29 04 | 139           |
| Westhampton Beach (NY)                     | KFOK          | 40 51 03 | 072 37 14 | 20            |
| Baltimore, Martin (MD)                     | KMTN          | 39 20    | 076 25    | 7             |
| Baltimore, Washington International (MD)   | KBWI          | 39 10 00 | 076 41 00 | 44            |
|                                            | 35 Station No | etwork   |           |               |
| Monticello (NY)                            | KMSV          | 41 42    | 074 48    | 428           |
| Poughkeepsie (NY)                          | KPOU          | 41 37 32 | 073 52 55 | 50            |
| Salsbury (MD)                              | KSBY          | 38 20 21 | 75 30 15  | 15            |
| Andrews AFB (MD)                           | KADW          | 38 49    | 076 51    | 86            |
| Washington, Reagan National (VA)           | KDCA          | 38 50 54 | 077 02 03 | 4             |
|                                            | 40 Station No | etwork   |           |               |
| Fort Belvoir (VA)                          | KDAA          | 38 43    | 077 11    | 21            |
| Washington-Dullus (VA)                     | KIAD          | 38 56 05 | 077 26 51 | 95            |
| Harrisburg, Capitol City Airport (PA)      | KCXY          | 40 13 13 | 076 51 14 | 105           |
| Harrisburg International Airport (PA)      | KMDT          | 40 11 46 | 076 46 23 | 94            |
| York Airport (PA)                          | KTHV          | 39 55 22 | 076 52 41 | 146           |



## **Andrews AFB**

TABLE A3. Surface Network Observing Stations for Andrews AFB.

| Observing Station                        | ICAO          | LAT      | LON       | Elevation (m) |
|------------------------------------------|---------------|----------|-----------|---------------|
|                                          | 10 Station Ne | twork    |           |               |
| Andrews AFB (MD)                         | KADW          | 38 49    | 076 51    | 86            |
| Washington, Reagan National (VA)         | KDCA          | 38 50 54 | 077 02 03 | 4             |
| Fort Belvoir (VA)                        | KDAA          | 38 43    | 077 11    | 21            |
| Manassas Municipal (VA)                  | KHEF          | 38 43    | 077 31    | 59            |
| Quantico MCAF (VA)                       | KNYG          | 38 30 45 | 077 17 30 | 3             |
| Washington-Dullus (VA)                   | KIAD          | 38 56 05 | 077 26 51 | 95            |
| Baltimore, Washington International (MD) | KBWI          | 39 10 00 | 076 41 00 | 44            |
| Baltimore, Martin (MD)                   | KMTN          | 39 20    | 076 25    | 7             |
| Shannon Airport (VA)                     | KEZF          | 38 16    | 077 27    | 26            |
| Hagerstown (MD)                          | KHGR          | 39 42 21 | 077 43 48 | 214           |
|                                          | 19 Station Ne | twork    |           |               |
| Culpeper County Airport (VA)             | KCJR          | 38 31 36 | 077 51 32 | 95            |
| Winchester Regional (VA)                 | KOKV          | 39 09    | 078 09    | 222           |
| Martinsburg (WV)                         | KMRB          | 39 24 14 | 077 58 30 | 169           |
| York Airport (PA)                        | KTHV          | 39 55 22 | 076 52 41 | 146           |
| Patuxent River NAS (MD)                  | KNHK          | 38 16 43 | 076 24 50 | 12            |
| Richmond International Airport (VA)      | KRIC          | 37 30 40 | 077 19 24 | 51            |
| Dover AFB (DE)                           | KDOV          | 39 08    | 75 28     | 9             |
| Lancaster Airport (PA)                   | KLNS          | 40 07 13 | 076 17 40 | 123           |
| Harrisburg, Capitol City Airport (PA)    | KCXY          | 40 13 13 | 076 51 14 | 105           |
|                                          | 25 Station Ne | twork    |           |               |
| Harrisburg International Airport (PA)    | KMDT          | 40 11 46 | 076 46 23 | 94            |
| Georgetown Suffox County (DE)            | KGED          | 38 41 24 | 75 21 45  | 15            |
| Wilmington (DE)                          | KILG          | 39 40 22 | 75 36 03  | 24            |
| Salsbury (MD)                            | KSBY          | 38 20 21 | 75 30 15  | 15            |
| Wallops Island (VA)                      | KWAL          | 37 56 26 | 075 27 47 | 12            |
| Melfa/Accomack Airport (VA)              | KMFV          | 37 39    | 075 46    | 15            |
|                                          | 30 Station Ne | etwork   |           |               |
| Petersburg (VA)                          | KPTB          | 37 11    | 077 31    | 59            |
| Charlottesville-Abermarle Airport (VA)   | KCHO          | 30 08 18 | 078 27 21 | 195           |
| Reading Regional Airport (PA)            | KRDG          | 40 22 24 | 075 57 34 | 105           |
| Philadelphia International Airport (PA)  | KPHL          | 39 52 06 | 075 13 52 | 6             |
| Philadelphia NE Airport (PA)             | KPNE          | 40 04 44 | 75 00 49  | 36            |
|                                          | 35 Station Ne | twork    |           |               |
| Wildwood ASOS (NJ)                       | KWWD          | 39 01    | 074 55    | 2             |
| Millville Municipal Airport (NJ)         | KMIV          | 39 21 58 | 075 04 42 | 26            |
| Langly AFB (VA)                          | KLFI          | 37 05    | 076 21    | 6             |
| Staunton/Shenandoah (VA)                 | KSHD          | 38 16    | 078 54    | 366           |
| Atlantic City (NJ)                       | KACY          | 39 27 53 | 74 34 02  | 23            |
|                                          | 40 Station Ne | twork    |           |               |
| Trenton, Mercer County Airport (NJ)      | KTTN          | 40 16 35 | 074 48 59 | 64            |
| Newerk International Airport (NJ)        | KEWR          | 40 40 57 | 074 10 10 | 5             |
| Belmar-Farmsdale (NJ)                    | KBLM          | 40 11    | 074 10 10 | 48            |
| Allentown (PA)                           | KABE          | 40 39 03 | 075 26 57 | 120           |
| McGuire AFB (NJ)                         | KWRI          | 40 01    | 074 36    | 41            |



## **Bibliography**

- 15<sup>th</sup> Operational Weather Squadron Homepage, 2003: 15<sup>th</sup> Operational Weather Squadron, Scott AFB, IL. [On-line at https://ows.scott.af.mil]
- Anthis, A.I. and A.P. Cracknell, 1998: Fog detection and forecast of fog dissipation using both AVHRR and METOSAT data. *Ninth Conference on Satellite Meteorology and Oceanography*, Paris, France, 270-273.
- Anthis, A.I. and A.P. Cracknell,1999: Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METOSAT) over lowland Thessalia, Hellas. *Int. J. Remote Sens.*, **20**, 1107-1124.
- Dagostraro, V.J., J.P. Dallavalle, M.D. Miller, and V.C. Southall, 1995: AFOS-era verification of guidance and location aviation/public weather forecasts-21(October 1993-March 1994). TDL Office Note 95-2, National Weather Service, NOAA, US Dept. of Commerce, 52 pp.
- Dallavalle, J.P. and V.J. Dagostraro, 1995: The accuracy of ceiling and visibility forecasts produced by the National Weather Service. Preprints, *Sixth Conference on Aviation Weather Systems*, Dallas, TX, Amer. Meteor. Soc., 213-218.
- Campbell, G.S. 1977: An Introduction to Environmental Biophysics. Springer-Verlang New York, New York. 176 pp
- Enger, I., J.A.Russo Jr., and E.L. Sorenson, 1964: A statistical approach to 2-7 hour prediction of ceiling and visibility. US Weather Bureau/TN No. 2. Hartford, CT. 194 pp.
- Federation of American Scientists, 2003: FAS Military Analysis Network, Washington, DC. [On-line at http://www.fas.org]
- Gurka, J.J., 1974: Using satellite data for forecasting fog and stratus dissipation. Preprints, *Fifth Conference on Weather Forecasting and Analysis*, St. Louis, MO, Amer. Meteor. Soc., 54-57.
- Gurka, J.J., 1978a: The use of enhanced visible imagery for predicting the time of fog dissipation. Preprints, *Fifth Conference on Weather Forecasting and Analysis*, Washington DC, Amer. Meteor. Soc., 343-346.
- Gustafson, A.V. and S.E. Wasserman, 1976: Use of satellite information in observing and forecasting fog dissipation and cloud formation. *Mon. Wea. Rev.*, **104**, 323-324.



- Hilliker, J. L. and J.M. Fritsch, 1999: An observations-based statistical system for warm-season hourly problematic forecasts of low ceiling at the San Francisco International Airport. *J. Appl. Metoer.*, **38**, 1692-1705.
- Johnson, E.C., 1978: Effect of snow cover on dissipation of fog and stratus. Satellite Applications Information Note 78/5, National Weather Service, National Environmental Satellite Service, US Dept. of Commerce, 4 pp.
- Montgomery, D.C. and G.C. Runger, 2003: Applied Statistics and Probability for Engineers. John Wiley & Sons, Inc. 706 pp.
- Murphy, A.H. and R.W. Katz, 1985: Probability, Statistics, and Decision Making in the Atmospheric Sciences. Westerview Press, Boulder, CO, 545 pp.
- National Weather Service, 1981: The use of Model Output Statistics for predicting ceiling, visibility, cloud amount, and obstructions to vision. NWS Tech. Proc. Bull. 303, 12 pp.
- National Weather Service, 1995: NGM-based MOS ceilings height guidance for the contiguous United States. NWS Tech. Proc. Bull. 414, 14 pp.
- Neter, J., W. Wasserman, and M.H. Kutner 1990: Applied Linear Statistics Models. Richard D. Irwin Inc., USA. 1189 pp.
- Porter, C., 1995: Short-term high resolution forecasting of fog, cloud ceiling heights, and visibility with the PSU/UCAR mesoscale model. M.S. Thesis, Dept. of Meteorology, The Pennsylvania State University, 197 pp.
- Reudenbach, Ch. and J. Bendix, 1998: Experiments with a straightforward model for the special forecast of fog/low stratus clearance based on multi-source data. *Meteorol. Appl.*, **5**, 205-216.
- Vislocky, R.L., and J.M. Fritsch, 1997: An automated observations-based system for short-term prediction of ceiling and visibility. *Wea. Forecasting*, **12**, 31-43.
- Weiss, C.E. and J.J. Gurka, 1975: Fog dissipation in the vicinity of the Chesapeake Bay. Satellite Applications Information Note 12/75-1, National Weather Service, National Environmental Satellite Service, US Dept. of Commerce, 4
- Wilks, D.S. 1995: Statistical Methods in the Atmospheric Sciences. Academic Press San Diego California 467 pp.



| DEDORT                                                                                                        | Form Approved             |                        |                                                                                                                       |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| REPORT DOCUMENTATION PAGE                                                                                     |                           |                        | OMB No. 074-0188                                                                                                      |  |  |
| maintaining the data needed, and completing and revi<br>suggestions for reducing this burden to Department of |                           | stimate o<br>perations | r any other aspect of the collection of information, including and Reports (0704-0188), 1215 Jefferson Davis Highway, |  |  |
| 1. REPORT DATE (DD-MM-YYYY)                                                                                   | 2. REPORT TYPE            |                        | 3. DATES COVERED (From – To)                                                                                          |  |  |
| March 2004                                                                                                    | Master's Thesis           | , ,                    |                                                                                                                       |  |  |
| 4. TITLE AND SUBTITLE 5a.                                                                                     |                           |                        | CONTRACT NUMBER                                                                                                       |  |  |
| A STATISTICALLY-BASED METHOD FOR PREDICTING FOG AND STRATUS DISSIPATION  5b.                                  |                           |                        | GRANT NUMBER                                                                                                          |  |  |
| 5c.                                                                                                           |                           |                        | PROGRAM ELEMENT NUMBER                                                                                                |  |  |
| 6. AUTHOR(S) 5d.                                                                                              |                           |                        | PROJECT NUMBER                                                                                                        |  |  |
| Lussier III, Louis L., Captain, USAF                                                                          |                           |                        | e. TASK NUMBER                                                                                                        |  |  |
|                                                                                                               |                           |                        | 5f. WORK UNIT NUMBER                                                                                                  |  |  |
| 7. PERFORMING ORGANIZATION NAM<br>Air Force Institute of Technology                                           | ` '                       |                        | 8. PERFORMING ORGANIZATION REPORT NUMBER                                                                              |  |  |
| Graduate School of Engineering and Management (AFIT/EN)                                                       |                           |                        | AFIT/GM/ENP/04-09                                                                                                     |  |  |
| 2950 P Street, Building 640<br>WPAFB OH 45433-7765                                                            |                           |                        |                                                                                                                       |  |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 15 <sup>th</sup> OWS                                  |                           |                        | 10. SPONSOR/MONITOR'S ACRONYM(S)                                                                                      |  |  |
| Attn: Lt Col Louis V. Zuccarello 102 West Losey Street DSN: 576-9505                                          |                           |                        | 11. SPONSOR/MONITOR'S REPORT                                                                                          |  |  |
| 102 West Losey Street DSN: 576-9505<br>Scott AFB IL 62225 e-mail: Louis.Zuccarello@scott.af.mil               |                           |                        | NUMBER(S)                                                                                                             |  |  |
| 12. DISTRIBUTION/AVAILABILITY STATEMENT                                                                       |                           |                        |                                                                                                                       |  |  |
| APPROVED FOR PUBLIC RELEASE                                                                                   | ; DISTRIBUTION UNLIMITED. |                        |                                                                                                                       |  |  |
| 13 SUPPLEMENTARY NOTES                                                                                        |                           |                        | <u> </u>                                                                                                              |  |  |

#### 14. ABSTRACT

A statistically-based forecasting tool is developed for Dover AFB, McGuire AFB, and Andrews AFB for dissipation times of fog and low stratus. Probability forecasts are produced at hourly increments from 0-6 hours for the most extreme reductions in visibility (less than 0.5 mi) and ceilings (below 200 ft). Forecasts are based on surface observations, upper air observations, and climatological parameters. Ceiling forecasts at Dover AFB and McGuire AFB show improvements over conditional climatology ranging from 1-51% with an average improvement of 19.2% when verified against an independent data set. McGuire AFB visibility forecasts show an average improvement over conditional climatology of 3%. These findings are of particular importance to the Air Force in general and specifically to the 15<sup>th</sup> Operational Weather Squadron (15 OWS) who produces forecasts for these airfields. Demonstrating a method superior to conditional climatology is expected to provide improved forecasts and flight operations in this region. The two forecasts for Andrews AFB show relatively low mean square errors, but are unable to consistently improve on conditional climatology, demonstrating an average decrease in forecasting skill of 42%. Small samples of data could be the reason for the decrease in skill. The Dover visibility forecast also shows negative forecast skill, with an average decrease of 39%. The method is a success in producing forecasts for ceiling and visibility criteria that had never previously been examined. Further research into the forecasts could produce a powerful tool consistently able to defeat conditional climatology. It is suggested that the 15 OWS incorporate this methodology into their operational forecasting routine

#### 15. SUBJECT TERMS

Fog/stratus forecasting, fog, stratus, fog/stratus dissipation, observations-based statistical methods

| 16. SECUR | RITY CLASSIFIC | ATION OF:    | 17. LIMITATION OF ABSTRACT | 18. NUMBER<br>OF | 19a. NAME OF RESPONSIBLE PERSON<br>Steven T. Fiorino, Maj, USAF (ENP) |
|-----------|----------------|--------------|----------------------------|------------------|-----------------------------------------------------------------------|
| a. REPORT | b. ABSTRACT    | c. THIS PAGE |                            | PAGES            | 19b. TELEPHONE NUMBER (Include area code)                             |
| U         | U              | U            | UU                         | 89               | (937) 255-3636, ext 4506; e-mail: Steven.Fiorino@afit.edu             |



Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18